- 相关推荐
《抽屉原理》教学设计优秀
作为一位不辞辛劳的人民教师,总归要编写教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。教学设计应该怎么写才好呢?以下是小编为大家收集的《抽屉原理》教学设计优秀,仅供参考,欢迎大家阅读。
《抽屉原理》教学设计优秀1
教学目标:
1.知识与能力:初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。
2.过程和方法:经历抽屉原理的探究过程,通过动手操作、分析、推理等活动,发现、归纳、总结原理。
3.情感与价值:通过“抽屉原理”的灵活应用感受数学的魅力;提高同学们解决问题的能力和兴趣。
教学重点:
经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
教学难点:
理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
教学过程:
一、创设情景
导入新课
师:同学们喜欢玩游戏吗?讲台前面有6张凳子,请7位同学来抢凳子坐。我不看同学们怎样坐,我敢肯定的说:这6张凳子中总有一张凳子至少有两个同学同坐,大家相信吗?(师生演示)
师:想知道老师为什么能做出如此准确的判断吗?这其中蕴含一个有趣的数学原理——抽屉原理。(板书课题)这节课我们就一起来研究这个数学原理。
师:通过今天的学习,你想知道些什么?
二、自主操作
探究新知
(一)活动一课件出示:把4枝铅笔放到3个笔筒里,可以怎么放?师:你们摆摆看,会有什么发现?把你们发现的结果用自己喜欢的`方式记录下来。
1、学生动手操作,师巡视,了解情况。
2、汇报交流说理活动
①师:有什么发现?谁能说说看?
师根据学生的回答用数字在黑板上记录。板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1)师:你们是这样记录的吗?
师:还可以用图记录。我把用图记录的用课件展示出来。师:还可以用表格记录。师板书在黑板上。 ②再认真观察记录,还有什么发现?
板书:不管怎样放,总有一个笔筒里至少有2枝铅笔。
③怎样摆可以一次得出结论?(启发学生用平均分的摆法,引出用除法计算。)板书:4÷3=1(枝)1(枝)
④师:这种方法是不是很快就能确定总有一个笔筒里至少有几枝铅笔呢?(学生交流)
⑤把5枝铅笔放进4个笔筒里呢?还用摆吗?板书:5÷4=1(枝)1(枝)
⑥课件出示:把6枝铅笔放进5个笔筒呢?把7枝铅笔放进6个笔筒呢?把10枝铅笔放进9个笔筒呢?把100枝铅笔放进99个笔筒呢?板书:7÷6=1(枝)1(枝)10÷9=1(枝)1(枝)100÷99=1(枝)1(枝)
⑦观察这些算式你发现了什么规律?预设学生说出:至少数=商+余数
师:是不是这个规律呢?我们来试一试吧!
3、深化探究得出结论
课件出示:5只鸽子飞回3个鸽笼,至少有两只鸽子要飞进同一个鸽笼里,为什么?
①学生活动
②交流说理活动
预设:生1:题目的说法是错误的,用商加余数,应该至少有3只鸽子要飞进同一个鸽笼。
生2:不同意!不是“商加余数”是“商加1”。
③师:到底是“商加余数”还是“商加1”?谁的结论对呢?在小组里进行研究、讨论。
④师:谁能说清楚?板书:5÷3=1(只)2(只)至少数=商+1
(二)活动二
课件出示:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
1、分组操作后汇报
板书:5÷2=2(本)1(本)7÷2=2(本)1(本)9÷2=2(本)1(本)
2、那么探究到现在,大家认为怎样才能确定总有一个抽屉至少有几本书?生:至少数=商+1
3、师:我同意大家的讨论。我们这个发现就是有趣的“抽屉原理
”,(点题)。“抽屉原理”又称“鸽笼原理”,最先是由19世纪德国数学家狄里克雷提出的,所以又称“狄里克雷原理”。这一原理在实际问题中有着广泛的应用。用它可以解决许多有趣的。问题,让我们来试试好吗?
三、灵活应用
解决问题
1、解释课前提出的游戏问题。
2、课件出示:8只鸽子飞回3个鸽舍,不管怎样分,总有一个鸽舍至少有几只鸽子?
3、课件出示:任意13人中,至少有两人的出生月份相同。为什么?
4、课件出示:任意367名学生中,一定存在两名学生,他们在同一天过生日。为什么?
四、畅谈感受
教学结束
同学们,今天这节课有什么感受?(抽生谈谈,师总结。)在这堂课中,我首先设计(抢凳子游戏,讲台前面有6张凳子,请7位同学来抢凳子坐。我不看同学们怎样坐,我敢肯定的说:这6张凳子中同学们不管怎样坐,总有一张凳子至少有两个同学同坐,大家相信吗?)目的一:小孩子最喜欢玩游戏,一说玩游戏,调动了学生学习的积极性;目的二:激发学生思考什么是抽屉原理,对解决这类问题有什么作用?
接着出示:把4枝铅笔放到3个笔筒里,可以怎么放?我让学生用自已喜欢的方法动手操作、汇报、板书,得出结论,又提出:怎样摆可以一次得出结论?小组讨论,然后针对他们的方法进行讲解(边操作边讲解),其实这方法是用平均分的摆法,引出用除法计算。)板书:4÷3=1(枝)1(枝)得出预设学生说出:至少数=商+余数,让学生有更深的认识,同时也让他们了解平均分的摆法最好,为后面的学习打下铺垫。
然后,出示活动二:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?先动手操作,同时用算式计算,看算式的规律是:发现是至少数=商+1接着我反问任意367名学生中,一定存在两名学生,他们在同一天过生日。为什么?这样有利于学生的反向思维能力的锻炼。
《抽屉原理》教学设计优秀2
教学目标
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.通过“抽屉原理”的灵活应用感受数学的魅力。
教学重、难点
经历“抽屉原理”的探究过程,理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
教学过程
一、问题引入。
师:同学们,你们玩过抢椅子的游戏吗?现在,老师这里准备了3把椅子,请4个同学上来,谁愿来?
1.游戏要求:开始以后,请你们5个都坐在椅子上,每个人必须都坐下。
2.讨论:“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗?
游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。
引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。
二、探究新知
(一)教学例1
1.出示题目:有4枝铅笔,3个盒子,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?
师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师出示各种情况。
板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1),问题:4个人坐在3把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。4支笔放进3个盒子里呢?
引导学生得出:不管怎么放,总有一个盒子里至少有2枝笔。
问题:
(1)“总有”是什么意思?(一定有)
(2)“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝?)
教师引导学生总结规律:我们把4枝笔放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作现了这个结论。那么,你们能不能找到一种更为直接的方法得到这个结论呢?
学生思考并进行组内交流,教师选代表进行总结:如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。首先通过平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。
问题:把6枝笔放进5个盒子里呢?还用摆吗?把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?……你发现什么?(笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。)
总结:只要放的铅笔数盒数多1,总有一个盒里至少放进2支。
2.完成课下“做一做”,学习解决问题。
问题:6只鸽子飞回5个鸽笼,至少有2只鸽子要飞进同一个鸽笼里,为什么?
(1)学生活动—独立思考自主探究
(2)交流、说理活动。
引导学生分析:如果一个鸽笼里飞进一只鸽子,最多飞进4只鸽子,还剩一只,要飞进其中的一个鸽笼里。不管怎么飞,至少有2只鸽子要飞进同一个鸽笼里。所以,“至少有2只鸽子飞进同一个笼里”的结论是正确的。
总结:用平均分的方法,就能说明存在“总有一个鸽笼至少有2只鸽子飞进一个个笼里”。
(二)教学例2
1.出示题目:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
(留给学生思考的空间,师巡视了解各种情况)
2.学生汇报,教师给予表扬后并总结:
总结1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。
总结2:“总有一个抽屉里的至少有2本”只要用“商+1”就可以得到。
问题:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?用“商+2”可以吗?(学生讨论)
引导学生思考:到底是“商+1”还是“商+余数”呢?谁的结论对呢?(学生小组里进行研究、讨论。)
总结:用书的本数除以抽屉数,再用所得的'商加1,就会发现“总有一个抽屉里至少有商加1本书”了。
师:同学们的这一发现,称为“抽屉原理”,“抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。
(三)学生自学例题3并进行自主交流,试着用手中的用具模拟演示场景。
三、解决问题
四、全课小结
资深编辑 • 1对1服务
品质保证、原创高效、量身定制满足您的需求
【《抽屉原理》教学设计优秀】相关文章:
《春》优秀教学设计02-18
《春》的优秀教学设计03-10
《春》优秀教学设计05-30
《将心比心》教学设计优秀03-23
天窗优秀教学设计01-12
gkh教学设计优秀09-15
《桂花雨》优秀教学设计01-28
望洞庭教学设计优秀10-23
《芦花荡》教学设计优秀02-29