青蓝网>教学资料>教学设计>组合图形的面积教学设计

组合图形的面积教学设计

时间:2024-10-04 10:17:39 教学设计 我要投稿

组合图形的面积教学设计

  作为一位无私奉献的人民教师,常常要根据教学需要编写教学设计,借助教学设计可以提高教学效率和教学质量。教学设计要怎么写呢?以下是小编收集整理的组合图形的面积教学设计,仅供参考,欢迎大家阅读。

组合图形的面积教学设计

组合图形的面积教学设计1

  教材分析

  《组合图形的面积》是第五单元的第一课。学生在三年级已学习了长方形和正方形的面积计算,在教材第二单元又学习了平行四边形、三角形和梯形的面积计算,本课组合图形面积的计算是这些知识的延展,也是实际生活中需要解决的问题。在已有知识基础上学习组合图形,一方面可以巩固基本图形的面积计算,另一方面还能将所学知识加以综合运用,提高学生解决实际问题的综合能力。

  学情分析

  作为五年级的学生,通过之前的学习对于平面基本图形的.感知和认识已有了一定的基础,也掌握了一些计算图形面积和解决图形问题的方法。但本班学生分析思考能力较差,基础较薄弱,所以应进一步提高知识的综合运用能力,加强团体合作精神,善于去交流思考,探索解决问题的策略。

  教学目标

  教学目的:

  1、在自主探索活动中,理解计算组合图形面积的多种方法。

  2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  3、能运用所学的知识,解决生活中组合图形的实际问题。

  情感、态度和价值观:

  1、通过联系生活实际,使学生感受到计算组合图形面积的必要性。

  2、学生通过参与探索活动,思维得到拓展,能力得到了提升,同时也掌握了多种解题策略。

  3、通过小组探索研究,使学生认识到与人合作的重要性,从而加强合作意识。

  过程和方法:

  1、在解决组合图形面积时,通过认真观察,独立思考、自主探索寻找解决问题的策略。

  2、通过小组讨论交流,理解解决问题的多种策略,从而经过比较选择最好的解题方法。

  教学重点和难点

  重点:能正确计算组合图形的面积。

  难点:能根据各种组合图形的条件,正确选择计算方法并解答。

组合图形的面积教学设计2

  一:教学目标

  1、掌握组合图形面积计算的方法,并能正确进行计算。

  2、培养学生识图的能力和综合运用有关知识的能力。

  二:教学难点

  能正确将一个组合图形进行分解,让学生学会这类题目的思考方法。

  三:教学准备

  组合图形纸片、 剪刀、 胶带

  四:教学设想

  以“妙”调趣,导入新课。让学生以原有的知识为基础,通过学生亲手的“拼”、“剪”将组合图形进行分解,计算出组合图形面积,从而掌握这类题的思考及解题方法。

  五:教学过程

教师活动



学生活动



设计意图



(课前)将一些组合图形的纸片发给学生



1、出示谜语:



草地上来了一群羊(打一水果名称)



2、出示第二个谜语:



又来了一群狼



(打一水果名称)





思考:



谜语的谜底是什么?





①草莓(没)







②杨(羊)梅(没)







抓住教学内容的特点,运用知识的正迁移。给学生以启示,调动学生的学习兴趣。





设问:



你们觉得哪个谜语好猜?为什么?





畅所欲言:



第二个谜语好猜。



因为第二个问题有了第一个问题作基础,所以就容易些。





用猜谜语的形式让学生来明事理,从而导出新课。



教师活动



学生活动



设计意图



1、 出示课题:



(组合图形的面积计算)



今天我们要学习组合图形的面积计算,你们觉得以什么为基础好?



2、复习:



长方形、正方形、平行四边形、三角形、梯形的面积计算公式。



1、思考、回答:





长方形、正方形、平行四边形、三角形、梯形









2、巩固:



巩固以前所学几种平面图形的面积计算方法。







1、引出新课













2、巩固长方形、正方形、平行四边形、三角形、梯形面积的计算方法。



出示例:



计算下面图形的面积(单位:米)



8





4



10





14



你们有什么好办法来求出这个组合图形的面积?











思考、讨论:



分小组思考讨论,这个图形的面积应该怎样计算?









以学生为主体,让学生进行分工、讨论,通过集体的'力量来计算这个图形的面积。





巡视:



作简单的提示和指导。



小组交流、讨论



通过剪一剪、拼一拼来计算图形的面积:

















1、让学生亲手参与学习,让学生明白能将组合图形进行分解。



2、初步培养学生的识图能力。



教师活动



学生活动



设计意图











采纳学生的解法进行分析与讲解:





8





4



10



(10-4)





14





(14-8)





反馈、交流:



小组推荐一位学生为代表将本小组的方法介绍给全班。



⑴、沿虚线剪下,将组合图形分割成一个三角形和一个长方形。



⑵、分别算出两个图面积。



⑶、将两个图形的面积相加,就是组合图形的面积。



即:S三角形+S长方形



=S组合图形









⒈让学生通过拼剪与讨论,将组合图形进行分解。









⒉让学生学会倾听同伴的意见,并能结合自己的想法进行评价。







出示计算过程



10×8=80(㎡)





(14-4)×(10-4)÷2



=6×6÷2



=36÷2



=18(㎡)





80+18=98(㎡)





观察、思考:



⑴、选择正确的



“底”、“高”和“长”、



“宽”进行计算。





⑵、观察计算组合图形面积的一般步骤。





⑶、明确80(㎡)、18(㎡)分别指什么?





让学能根据图形关系,推算出图中的隐蔽条件。









让学生明确计算组合图形面积时的一般步骤和格式。



教师活动



学生活动



设计意图





提问:



有没有其他的解法?







小结:










这两种解法的差异





小组发表自己的解题方法。











巩固、明确:



通过分解图形的面积相加或补成所学的平面图形再通过面积相减,都可以计算出组合图形的面积。





让学生明确,解组合图形的面积,方法不是唯一的。













掌握组合图形面积的计算方法。















布置巩固练习:



选一种你最喜欢的方法进行计算,并将题目的解题过程写下来。













巩固、练习:



(学生独立完成)



进一步巩固组合图形面积的计算方法以及书写时的注意点。















通过学生的独立练习,让学生明确在书写时的注意点以及熟悉解题的步骤。



教师活动



学生活动



设计意图





1、出示课堂练习:



求下面涂色部分的面积(单位:厘米)



10



10



5



20





2、个别指导















课堂练习













培养学生综合运用有关知识的能力。





结束语:



通过这节课对组合图形面积的学习,今后在解这样的题目时,你有什么心得或对其他同学有什么建议?





即发挥了学生的主动性,又将本堂课的内容进行了总结。





1、布置课堂作业





2、个别指导







课堂练习







巩固本节课所学的内容。



组合图形的面积教学设计3

  【教学内容】

  人教版五年级上册第六单元《组合图形的面积》

  【教材分析】

  本课是五年级上册第六单元内容,是在学生学习了长方形与正方形。平行四边形。三角形与梯形的面积计算的基础上学习的,一方面可以巩固已经学过的基本图形,另一方面则能将所学的知识进行整合,注重将解决问题的思考策略渗透其中,提高学生的综合能力。

  【设计理念】

  儿童思维发展的一般规律是从具体操作开始的,再逐步形成抽象的思维。教学设计时,充分考虑学生原有认知水平及儿童心理发展水平,从描述组合图形入手,让学生自主探究,注重让学生在观察、操作、合作交流、比较等数学活动中,找出计算组合图形面积的多种方法,并进行优化选择。学生在解决问题的过程中,获得数学学习方法。在对学习过程与结果的反思中,提高解决问题的能力。

  【教学目标】

  1、能结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积

  2、能运用所学知识解决生活中组合图形的实际问题。

  3、自主探索,合作交流。养成认真思考,团结协作的能力。

  4、通过找一找。分一分。拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”。“补”等方法来计算组合图形的面积。

  【教学重点】

  探索并掌握组合图形的面积计算方法

  【教学难点】

  理解并掌握组合图形的组合及分解方法。

  【数学思想】

  分类、化归

  【教学过程】

  一。创设情境,引出问题

  教师活动

  学生活动及达成目标

  1、说一说:

  (1)让学生快速说出老师出示的平面图形的名字(正方形。长方形。平行四边形。三角形。梯形)。

  (2)说出上面各种图形的面积计算公式及字母表达式(并适时出示多媒体)。

  2、看一看:

  老师出示一些组合图形,让学生仔细观察,思考:这些图形跟我们刚才复习的基本图形有什么不同?(这些图形都是由几个基本图形组合而成的。)

  出示生活中常见的组合图形(如房子的侧面。风筝。七巧板拼图。中队旗等),问:要想知道做一面中队旗用多少布就是求什么?

  3、揭示课题并板书:组合图形的面积

  学生观察回答

  让学生在说一说,看一看的过程中充分调动多种感官参与到学习中来,在浓厚的学习氛围中感受到知识于生活,而又服务于生活,明确生活中的很多问题都和组合图形的面积有关。

  二、共同探索,总结方法

  教师活动

  学生活动及达成目标

  由张老师家新房的侧面平面图入手,设计让学生合作交流解决“房子侧面积”这一生活问题。

  教师利用多媒体演示。其他同学能清楚地与自己的思路进行比较,并及时发现错误并纠正过来。

  总结组合图形面积的计算方法。

  让学生自主观察比较上面几种方法的不同之处后,再总结出求组合图形面积的计算方法,掌握“分割法”和”添补法”的计算方法。让学生明确分割图形越简洁,解题方法越简单。与此同时,教师要适时提醒学生们要考虑到分割的图形与所给条件的关系,有些图形分割后找不到相关的条件就是失败的。这样做有利于突破本节课的教学重点和难点。

  1、学生独立与小组合作交流解决组合图形面积计算问题。

  2、小组汇报学习情况。

  (1)将组合图形分割成一个三角形和一个正方形

  (2)将组合图形分割成两个梯形

  (3)将组合图形添补上两个小三角形,使它成为一个大长方形,再用大长方形的面积减去两个小长方形的面积。

  在这一环节中我真正的转变了教师的角色,给学生足够的时间和空间,积极主动地参与到学习中,获取更多的解题方法。让他们都有成功的体验。

  学生通过小组合作交流解决组合图形的面积时,重视把学生的思维过程充分暴露出来,让学生认真观察。独立尝试。合作交流。为每个学生提供参与数学活动的空间和时间,鼓励学生用不同的方法进行计算,开拓思维,并引导学生寻找最简方法。

  三、运用方法,解决问题

  教师活动

  学生活动及达成目标

  同学们不仅合作做得好,独立解题也很棒。下面我们就用今天所学到的知识解决生活中的问题。

  出示课本104页1题,让学生独立完成,并说明自己人是怎样求出组合图形的'面积的?

  学生独立完成,并汇报自己的解决方法,让学生清楚的认识到拓展思维,可以从多角度分析解决问题,从而多方法解决问题。

  四、反馈巩固,分层练习

  教师活动

  学生活动及达成目标

  1、学生举例并结合学生自己举的例子解答讲解

  2、分别出示求组合图形及阴影的面积?

  让学生举出自己能够解决的例子,增强他们解决问题的自信心。

  学生已经自己举例练习组合图形的面积了,教师再出不同形式的练习,既巩固了本课所学的知识,又培养了学生解决实际问题的能力。体现了数学于生活,应用于生活的教育理念。

  五、课堂总结,提升认识

  教师活动

  学生活动及达成目标

  通过这一节课的学习,同学们有什么收获?你认为自己的表现怎样?哪位同学表现的最好?有哪些不明白的地方?

  通过本节课的学习,学生学会了求组合图形的面积,把自己的收获讲给大家听,也是对新知记忆和理解的又一次升华。

  【板书设计】

  组合图形的面积

  把组合图形分割成已学过的简单图形,再算这些简单图形的面积的和,就是组合图形的面积。

  分割法添补法

组合图形的面积教学设计4

  教学内容:

  北师大版五年级数学上册第五单元图形的面积(二);75~76页:组合图形面积

  教学目标:

  1、知识目标:

  ①、明确组合图形是由几个简单图形组合而成,求组合图形的面积就是求几个简单图形的面积的和或差的计算

  ②、在自主探索的活动中,理解组合图形面积的计算方法。

  ③、能根据各种组合图形的条件,有效的选择适当的计算方法并能正确解答。

  2、能力目标:

  ①、通过实践操作、练习,提高观察、分析能力和解题的灵活性;能正确地分析图形。

  ②、通过图形的组合和分解培养分析问题、解决问题的能力以及学会把复杂问题转化为简单问题的策略意识。

  3、情感与价值观目标:

  ①、通过动手拼图体会组合图形的美,并能展示自我,张扬个性。

  ②、让孩子体验到成功的喜悦,培养了学生战胜困难的决心和勇气,团结友爱的美好情感。

  教学重点:理解什么是组合图形,能运用“分割法、添补法或割补法”将组合图形转化成已学过的图形,计算组合图形的面积。

  教学难点:选择合适有效的计算方法解决实际问题。

  教具准备:课件、图片等。

  教学过程:

  一、拼图游戏

  1、请同学们任意选两个图形拼出你喜欢的物体。

  2、请你说说你用哪些图形拼成什么?(2~3人)

  3、请几位同学说说这些基本图形的面积。

  【设计意图:利用同学们喜欢的游戏,激发同学们的学习兴趣,创造轻松愉快的课堂氛围,增强求知欲。用猜谜语的形式让学生来明事理,从而导出新课。】

  二、观察图形,明确定义

  1、课件出示生活中的组合图形。

  (1)观察这些图形有什么共同特点呢?引出组合图形的定义。(2)想一想:生活中哪些地方还有组合图形?

  窗户、飞机模型……

  2、师总结,揭示课题。

  这些精美的图案是由两个或两个以上的简单图形组合而成的叫组合图形。今天,我们一起来探索组合图形面积的计算(板书课题)。

  【设计意图:欣赏组合图形的图案,给学生以美的享受,使学生感受到生活中组合图形的.存在,并激发学生动手操作的兴趣和欲望。】

  三、动手操作,探究新知

  1、出示情境

  师:王老师家新买了一处房子,正在装修。但是准备铺客厅地板时遇到了难题,我们一起去看看。(电脑显示客厅平面图)

  师:这是王老师家的客厅平面图,王老师要在上面铺木地板,她要买多少平方米的木地板呢?这就需要求出什么?谁能来估计一下。

  师:谁估计得更准确呢?就必须计算出这个图形的面积。那么,怎样把这个图形转化成已学过的图形呢?

  2、动手操作,合作探究

  ①独立操作寻找方法

  师:请同学们利用手上的材料动手做一做。

  ②小组合作探究面积的计算方法

  师:想好的同学以小组为单位说说你的想法。

  ③全班交流

  师:谁能介绍一下你们是怎么样把这个图形转化成已学过的图形的?

  学生介绍自己不同的想法。

  【设计意图:小组合作,培养合作意识。培养学生的动手操作能力。电脑演示形象直观。引导学生用多种感官参与知识的形成过程给学生创设思维的空间,注意诱发学生积极体验。】

  3、归纳方法

  ①我们在计算组合图形面积时用到了哪些方法?

  学生自由发言,教师总结“分割”“添补”。

  ②讨论:怎样对组合图形进行合理、有效的分割?

  4、计算组合图形的面积。

  师:请同学们选择一种方法计算这个组合图形的面积。(生独立完成)

  师:谁来说说你是用哪种方法计算的。

  生介绍,师根据学生的介绍演示不同的方法。

  师:这几种方法你们最喜欢哪一种呢?

  生:第一种,第二种———

  师:为什么?(引导学生选择分得最少的,计算又简洁的方法)

  5、师小结:

  不管是分割还是添补,都是将组合图形转化为学过的基本图形。在计算组合图形的面积时有多种方法,同学们要认真观察,多动脑筋,选择自己喜欢而又简便的方法进行计算。

  【设计意图:注重方法的总结,鼓励学生对操作进行总结。】

  三、反馈练习,及时巩固。

  如今的信息时代,信息传递的实在是快,刚才大家解决难题的事很快就在外面传开了,这不老师又接到了几封求助信(大屏幕出示)愿意帮助他们吗?

  1、来自农民伯伯的求助信:

  同学们,下图是我家的花圃,请你帮我算一算一共有多少平方米?(出示课件)

  2、来自工人阿姨的求助信:

  我厂现在要生产一批零件,下图是这种零件的横截面图,你能帮我算出这种零件的横截面面积吗?(出示课件)

  3、来自小红的求助信:

  你能帮我算出少先队中队旗的面积吗?(出示课件)

  独立完成,师生共同订正。

  【设计意图:把数学和实际生活联系在一起,唤起亲切感和情感需要。】

  四、小结

  这节课你学会了什么?有什么收获?

  【设计意图:锻炼学生总结概括能力,口语表达能力得到发展。】

组合图形的面积教学设计5

  教学内容:

  北师大版小学数学教材五年级上册第88—89页。

  教材分析:

  《组合图形的面积》是北师大版五年级上册第六单元的第一课,学生在三年级已学习了长方形与正方形的面积计算,在本册的第四单元又学习了平行四边形,三角形与梯形的面积计算,本课时的组合图形面积的计算是这两方面知识的发展,也是日常生活中经常需要解决的问题,在此基础上学习组合图形,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,感受计算组合图形面积的必要性,二是针对组合图形的特点强调学生学习的自主探索性。让学生自主探索计算组合图形的基本方法,并在交流、讨论中开阔思路,修正想法,从而更好地解决生活中有关组合图形的实际问题。

  学情分析; 作为五年级的学生,通过之前的学习对于平面基本图形的感知和认识已有了一定的基础,也掌握了一些计算图形面积和解决图形问题的方法。但本班学生分析思考能力较差,基础较薄弱,所以应进一步提高知识的综合运用能力,加强团体合作精神,善于去交流思考,探索解决问题的策略。

  教学目标:

  1、在自主探索活动中,理解计算组合图形面积的多种方法。

  2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。 3、进一步渗透转化的教学思想,提高学生运用新知识解决实际问题。 4、感受计算组合图形面积的必要性,产生积极学习的兴趣。 教具:多媒体教学课件 教学过程:

  一、图形欣赏、激发兴趣

  1、今天老师给大家带来了一个小动物,你们猜猜会是什么动物呢?课件出示由基本的平面图形组成的金鱼图形学生欣赏。

  (设计意图:兴趣是最好的老师,学生怀着极大的兴趣是上好一节课良好的开端,兴趣是一种无形的力量,是学好数学的保证。)

  2、美丽的金鱼是由哪几个基本的平面图形组成的?在学生回答的同时一并复习正方形、长方形、平行四边形、三角形、梯形的面积计算公式。

  (设计意图:复习学过的五种基本图形的面积计算方法,唤醒学生的旧知,为下面学习组合图形的面积计算作铺垫,也为确保正确计算组合图形的面积夯实基础)

  二、自主探索、合作交流 1、发现规律,初揭课题

  拼图游戏:让学生用七巧板拼出自己喜欢的一个图案,学生一边拼图形,一边交流,教师巡视指导。选择2-3个有代表性的图形用实物投影展示出来。 师:请同学们仔细观察并思考,这几个图形有什么共同特征?

  生:(观察思考回答)这些图形都是由几个简单的基本平面图形拼出来的。 师:对,我们就把像这样由两个或两个以上平面图形组合而成的图形叫做组合图形。(板书:组合图形)

  (设计意图:“数学是思维的体操”,作为小学生思维能力训练的主阵地,数学课堂应开启学生的发现之旅,让学生练就一双善于发现的眼睛,同时游戏活动激发了学生学习的积极性和探究欲望。)

  2、寻找图形,再揭课题

  师:现实生活中存在着大量的组合图形,你能从我们生活中哪些物体的表面找到组合图形?

  生:教室窗户由一个小长方形和两个大长方形组成、房子侧面由一个三角形和一个长方形组成、……

  师:真不错!同学们都是生活的有心人,其实组合图形就在我们身边。

  师:基本图形的面积计算同学们都是游刃有余!今天的关键是想求组合图形的面积,我们应该怎么办呢?

  生:只要把组合图形中几个简单的平面图形的面积加在一起就行了。

  师:真棒!这节课我们就一起来学习求组合图形的面积。(添加板书:的面积) 3、观察图形,估算面积

  师:淘气家新买了住房,想把新房的客厅铺上地板,新房的客厅地板的面积有多大呢?同学们能帮他算算吗?(拿出老师发给同学们的客厅平面图)。

  师:你能估一估这个不规则图形的面积吗?说说你是怎样想的? 生:进行估算。汇报。

  (设计意图:这一环节的设计主要是想培养学生的估算意识。同时让学生理解这个图形不是简单图形,不能直接估计它的面积,让学生在估算的时候,潜移默化地运用添补和分割的转化思想,也为下一步计算组合图形面积做一个很好的铺垫)

  4、独立探索,计算面积。

  师:同学们都说出了自己估算的理由,那你估算的数据接近真实的数据吗?请同学们观察手中的客厅平面图试着寻找出计算这个图形的方法。

  学生独立活动:解决组合图形面积计算问题。 5、合作交流,探索方法。 (1)小组合作,交流方法

  师:老师刚才发现同学们的方法都很有自己独到的见解,那现在就请小组内同学互相交流一下自己的想法?

  学生小组内互相交流,老师深入到小组当中去参与他们的活动,并给予适当的指导。(设计意图:直接让学生凭借已有的经验探索计算组合图形面积的方法,给了学生更大的自主探索的空间。)

  (2)全班共享,提炼方法

  师:哪个小组的同学愿意先来汇报你们的想法?

  生:在图形里面画一条线,分成一个长方形和一个正方形,分别算出长方形和正方形的面积,再算面积之和。

  师: 真好,这条线叫辅助线,是我们数学学习的好帮手,我们一般将它画成虚线,还有不同的方法吗?

  学生汇报,课件适时出示不同的计算方法,在探讨的过程中引导学生给不同的.计算方法命名。

  师小结:刚才同学们在汇报的过程出现了两种方法,一种是分割法,一种是添补法,另一种是割补法,那这几种方法有什么特点呢?请小组内的同学讨论一下好吗?

  小组内讨论并汇报。 师小结:

  分割法:当我们用分割法时,分割的图形越简洁,其解题方法就越简单,要考虑到分割的图形与所给条件的关系。有些图形分割后找不到相关的条件就不行了。用分割法计算时,要先算出各部分的面积,最后把它们加起来。(板书:分割法求和)

  添补法:当我们添补上一块之后,能根据给定的条件求出添补之后图形的面积,那我们就可以尝试一下,否则这种方法就是行不通的。用添补法计算,记得把添上的这部分面积减去。(板书:添补法求差)

  割补法:要求割下来的这部分能正好拼上。这种方法,既有分割,又有添补,(板书:割补法灵活计算)

  3

  师:同学们再观察一下,这些方法看似不同,但其实它们都有一个共同的特点,你能发现吗?

  师小结:不论是分割或添补,目的都是——把不规则的图形——转化成——已学过的基本图形。(板书:转化) (3)比较反思,选择方法

  师:通过同学们刚才的回答,老师发现你们可以灵活的运用解题的方法真是太好了,那在本题当中你更喜欢哪一种方法呢?说说你的理由。

  师小结:求一个组合图形面积的时候,因为分割、添补的方法不同,计算步骤也不同,但最后的计算结果应该是相同的。虽然求组合图形面积的方法是多样的,但我们还要根据所给的条件,灵活地选择合理、简便的方法进行计算。(板书:合理 、简便)

  (设计意图:这里体现了多种学习方式并存,首先,学生通过自己独立思考,得出解决问题的方法;然后通过小组和全班交流,使学生学会了别人的方法;最后,从这些方法中,比较、反思、知道最简便的方法。使学生在不断完善认识的过程中,学会倾听、学会吸纳他人的意见,享受积极思考获得的快乐。引导学生交流,引起思维的碰撞,使他们体会到解决问题方法的多样性。】)

  三、 应用拓展,提高能力

  1、练一练1,书中第1题下面的图形可以分成哪些已学过的图形?

  (作业设计意图:每一幅图都有多种分法,课堂上应避免学生分得过于复杂化,鼓励学生选择合理 、 简便的分法。)

  2、练一练2,书中第2题,认真观察图,选择有用的数据,你想怎样计算?把你的方法在小组里交流。指名汇报。对于不同的算法,师生共同分析,提升比较简便的方法,加以指导。

  (作业设计意图:这道题是对上一题的补充,拓展,同学们都能用分割法把这道解出来,但是用添补法到底能不能解决这道时,同学们就会发出疑问,可是当老师适当进行点拨之后,就会是另外一种情况,整体代法的介入不仅是对这道题的一个有效的补充,而且也为六年级求圆的面积埋下伏笔,同时也充分体现了算法多样化的教学理念。)

  3、练一练3,书中第3题,计算这张硬纸板还剩多大的面积?

  (作业设计意图:通过两个层次的分割,使学生明白在组合图形的分割中,需要根据所给的条件进行合理的分割,分割的图形越简洁,计算起来越简便。)

  4、练一练4,书中第4题,学生自己独立思考并计算,然后说说自己的想法。

  (作业设计意图:习题由浅入深、形式多样、难易适度,把数学与应用紧密结合在一起,不仅发展了学生的空间观念,而且培养了学生灵活解决实际问题的能力,获得了更多的解决问题的策略,还通过上面的两道解决实际问题的练习,使学生感受到数学就在我们身边,生活中处处有数学。)

  5、思考,计算下面图形中阴影部分的面积。多媒体出示。

  四、总结收获,反思提升

  师:同学们通过本节课的学习,你有什么收获呢? 引导学生说说学会了哪些?怎样学会的?还有哪些问题?。

  (设计意图:总结的目的是让学生对本节课的内容进行一下回顾,让学生体会到独立思考和相互学习都很重要,做到在数学方法和数学思想方面都有所收获,有所提升。)

  五、独立思考、完成作业 长江作业《组合图形的面积》

  六、板书设计:

  组合图形的面积

  转化

  分割法:求和

  添补法:求差(特例除外) 割补法:灵活计算 合理 简便

  (设计意图:本节课重点是掌握求组合图形面积的计算方法,设计这样的板书不仅可以直观地、简明扼要地展示本节课求面积的方法,便于学生理解、把握和选择,而且明显看出都是把组合图形转化为基本图形,感受“转化”这一数学思想方法,揭示了知识的内在规律及相互间的联系与区别,使学生在数学思想与方法上得到发展。)

组合图形的面积教学设计6

  一、教材分析:

  这是小学数学人教版第九册第五单元的内容。学生已经学习了平行四边形、三角形、梯形的面积,在此基础上学习组合图形,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生综合能力。本节课重点探索组合图形面积的方法。教材安排的内容除了巩固学生所学的知识外,更注重将解决问题的思考策略渗透其中。通过学生亲手的“拼”、“剪”,将组合图形进行分解,计算出组合图形面积,从而掌握这类题的思考及解题方法。

  二、学情分析:

  根据学生已有的生活经验,对组合图形的认识并不很难。学生已经系统的学过平行四边形、三角形、梯形的面积计算方法,对转化思想也有所渗透。对于方法的借鉴、交流、思考、创新都需要教师的引导和点拨。

  三、教学目标

  1、掌握组合图形面积计算的方法并正确计算。

  2、能根据各种组合图形的条件有效地选择计算方法并进行正确的解答。

  3、能运用所学的知识,初步解决生活中组合图形的实际问题。

  四、教学重点和难点

  1、掌握组合图形面积的计算方法。

  2、理解计算组合图形面积的多种方法,让学生学会这类题目的思考方法。

  3、学会运用“分割”与“添补“的方法计算组合图形的面积。

  五、教学过程

  (一)、谜语激趣,以旧引新

  (课前)将一些教学用具的纸片发给学生

  1、谈话导入,课件出示谜语。

  (①草地上来了一群羊。打一水果名称

  ②又来了一群狼。打一水果名称)

  (1)思考:谜语的谜底是什么?

  (①草莓

  ②杨(羊)莓(没))

  设计意图:抓住教学内容的特点,运用知识的正迁移。给学生以启示,调动学生的学习兴趣。

  (2)提问:你们觉得哪个谜语好猜?为什么?(第二个,因为第二个问题有了第一个问题做基础,所以容易些。)

  (3)学生回答后教师出示答案,从而导出新课,并板书课题。

  设计意图:用猜谜语的形式让学生来明事理,从而导出新课。

  2、课件出示各种学过的基本图形。(如长方形、正方形、平行四边形、梯形、三角形)

  (1)同桌交流、讨论。(小动)

  (2)代表回答。

  (3)复习关于平面图形面积公式。

  设计意图:巩固所学几种平面图形的面积公式及计算方法。

  (二)、自主探究新知

  1、小组合作,交流探讨。

  (1)教师要求:拿出课前准备的图片从中任意选择两个图形,拼成一个新的图形。边做边思考,你拼的图形像什么,是由哪个基本图形拼成的,小组讨论这个图形的面积是怎样计算的。

  (2)2人小组讨论并计算出图形的面积。(小动)

  设计意图:以学生为主,让学生进行分工、讨论,通过集体的力量来计算这个图形的面积。

  2、自主合作,探索方法。

  课件出示例题:小华家买了新房,计划在客厅铺地板,请你估计他家至少需要买多少瓷砖铺地板,再实际算一算,并与同学交流。(有图例)

  (1)让学生拿出课前准备的图片中组合图形的.学具,与小组合作,先估一估,再通过自己喜欢的方法,计算出这个图形的面积。(学生合作讨论,教师巡视并作简单的提示和指导。(大动)

  (2)学生动手剪一剪,拼一拼(沿虚线剪下,将组合图形分割成一个大长方形和小长方形或两个梯形或补一个小正方形等多种割补法。)计算图形的面积。

  (3)根据学生的解法,教师进行分析、点评。

  设计意图:让学生亲手参与学习,通过拼剪与讨论,明白能将组合图形进行多种分割或割补后再计算其面积。

  (三)、联系实际,巩固拓展

  1、课件出示课本中多种组合图形,学生辨别图形是由哪些平面图形组成的。

  2、学生独立完成,代表发表自己的解题方法。

  3、根据学生回答,教师点评:通过分解图形的面积相加或补成所学的平面图形再通过面积相减,都可以计算出组合图形的面积。

  设计意图:让学生根据图形关系,推算出图中的隐藏条件,让学生明确解组合图形的面积方法不是唯一的。

  (四)、回顾全课,小结

  1、学生小结

  2、教师总结

  3、布置作业。

  设计意图:让学生自己小结,教师再总结,即培养了学生的概括能力,又能将本堂课的内容进行了总结。最后布置作业来巩固本节课所学的内容。

  六、板书设计

  组合图形的面积

  组合图形分割、添补基本图形

组合图形的面积教学设计7

  教学内容:

  义务教育课程标准实验教科书小学数学五年级上册第92至93页的内容。

  教学目标:

  1、认识组合图形,会把组合图形分解成已学过的平面图形。

  2、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。

  3、培养学生的观察能力和动手操作的技能,发展空间观念,提高思维的灵活性。

  4、通过拼组图形,使学生感受数学与现实生活的密切联系,体会数学带给大家的生活美。

  教学重点:

  探索并掌握组合图形的面积计算方法。

  教学难点:

  理解并掌握组合图形的组合及分解方法。

  教具准备:

  多媒体课件

  学具准备

  各种有色卡纸、胶水、剪刀等。

  教学过程:

  一、复习铺垫:

  同学们,老师想知道你们已经学会了计算哪些平面图形的面积?

  二、创设情境,激趣导入。

  师:大家学会的知识可真多。为了奖励你们,老师请你们去欣赏一些美丽的建筑物,好吗?请同学们欣赏时认真想想:你发现了什么?(课件展示)

  师:同学们观察得真仔细!除了这些外,老师也发现了一些这样的图形:

  (课件展示)

  我们学过这些图形吗?

  请同学们认真观察,这些图形有什么共同的特征?

  左边由几个图形组成?右边呢?大家想想看一个图形还可能是由几个图形组成的呢?

  像这些由几个简单的图形组合而成的图形,我们给它取个什么名字好呢?你是怎么知道的?(板书:组合图形)这节课你们想探究组合图形的哪些知识?

  三、自主学习,探究新知。

  1、组合图形的分解:

  师:组合图形在日常生活中有着广泛的应用,我们一起来认识生活中的组合图形。

  ⑴电脑出示书第92页的四幅主题图。

  师:认真观察这四幅图,它们分别是由哪些简单图形组成的?请同学们打开书本92页,先找一找,然后在四人小组内互相讨论。比比看哪一个小组的分法最简单?

  ⑵四人小组讨论。

  ⑶小组到实物投影机上展示各种分法。

  ⑷让学生举例说说生活中的组合图形。

  同学们,开动脑筋想想:生活中哪些地方还有组合图形?

  2、自主解决例题。

  师:同学们真棒呀!知道生活中存在着很多美丽的组合图形,那如果老师想知道这些组合图形有多大,实际上是求什么?(板书:的面积)你们会求吗?下面老师考考大家是不是真的会?

  ⑴出示例题4

  ⑵生独立解答。还有其他解法吗?如果有困难,小组内互相帮助。(两学生板演)

  ⑶生汇报。

  师:你是怎样想的?这两种解法你喜欢用哪一种解法?说说你的理由。

  师生小结:从例题中我们可以看出,同一个组合图形,由于分解的方法不同,解法也就不同。所以请同学们想想,求组合图形面积时关键是做什么?(板书:分解)

  ⑷生看书质疑。

  师:下面老师再考考你们是不是真的明白。

  3、出示做一做。问:这块地是由哪些简单图形组成的?

  ⑴生独立计算。

  ⑵生展示思路。

  四、应用新知,解决问题:

  师:同学们不仅合作做得好,独立解题也很棒。下面我们就用今天所学到的知识解决生活中的问题。

  1.选择题:

  (1)

  上图阴影部分的面积是()

  ①6平方厘米②10平方厘米③5平方厘米

  (2)下面是一块正方形空心地砖,它实际占地面积是()

  ①40×40+13×13②40×40-13×13③40×40

  (3)下图的面积计算式子是()

  ①12×5+8×6.5②12×5+8×6.5÷2③8×6.5+(8+12)×5÷2

  师:通过刚才的练习,你认为该怎样求组合图形的面积?

  生自由发言。

  师小结:可见求组合图形的面积可以用相加的方法,也可以用相减的'方法。(板书:相加或相减)

  2.求中队旗的面积。

  师:看来今天大家都掌握得很好。可是老师被一个难题难住了。咱们班同学准备去秋游,学校要求我们制作一面中队旗。(出示中队旗)可老师不知道要用多少布。同学们能否用今天所学的知识来帮帮老师呢?动手算一算。请小组内分工合作。

  (1)出示讨论提纲:

  你们组能想出几种算法?有没有更简便的方法?

  看哪一小组分工合作的最好?速度最快?

  (2)小组分工合作。

  (3)展示学生的各种算法。

  师生小结:从练习中我们知道在求组合图形的面积时,要根据已知条件对图形进行分解,不是任意分解都能计算的。分解图形时要考虑尽量用简便的方法计算。

  (板书:根据已知条件进行分解)

  五、新知的拓展:组拼组合图形

  谢谢你们,老师终于知道了需要买多少布了。早上老师又接到一个任务,学校的艺术节快到了,要展览同学们的作品。老师想利用这节课把这个任务完成好,大家愿意吗?请各小组用几个简单的图形组合成一个美丽的图案。看哪一小组拼得图案最美丽,就把他们组的作品拿到艺术节上去展览。同学们赶快动手吧。

  1、学生合作组拼。

  2、展示评价学生的作品。

  3、选择其中一幅学生作品,让学生说说该怎样做才能求出它的面积。

  六、总结:

  通过这一节课的学习,同学们有什么收获?你认为自己的表现怎样?哪位同学表现的最好?有哪些不明白的地方?

  附:板书设计

  教学设想:

  《数学课程标准》的基本理念中指出:学生的数学学习内容应当是现实的、有意义的、富有挑战性的;学生的数学学习活动应当是一个生动活泼、主动的和富有个性的过程。如何把这个基本理念应用到数学课堂教学中呢?在教学《组合图形的面积》这一课中,我针对这一理念,作了尝试,创设了生动的生活情境,精心设计了学生的学习内容。

组合图形的面积教学设计8

  教学内容:

  人教版义务教育课程标准实验教科书,数学五年级上册第五单元92~94页。

  教材分析:

  组合图形面积的计算放在多边形面积计算最后学习,有利于综合运用平面图形面积计算的知识,进一步发展学生的空间观念。

  1、认识组合图形。

  由于实际生活中,我们见到的物体表面,许多是由我们已学过的正方形、长方形、平行四边形、三角形和梯形组合成的图形,所以教材紧密结合生活实际认识组合图形。

  教学中,可以使用教材中的实例,也可以应用学生身边的实例;观察实物注意从易到难;找生活中的组合图形时,要强调从物体的表面上找,不要与立体组合图形混淆。

  2、学习组合图形面积的计算,因为限于简单的组合图形,教材主要安排2~3个简单图的形组合。由于一个图形可以有不同的分解方法,教材展示了两种计算方法。

  教学时,可让学生合作探究,通过试做、交流、讨论、展示,使学生明确计算组合图形面积的基本思路,即可以把组合图形分割成我们已经会计算面积的简单图形,分别计算出他们的面积,再求和,或者把原图添补成我们已经会计算面积的简单图形,再减去所添补图形的面积,也就是添补求差法,同时也要让学生认识到要根据已知条件对图形进行分解,不是任意分解都能计算的。鼓励学生用不同的方法去计算,然后交流各自的算法,尽量考虑用简便的方法计算。

  教学目标:

  1、认识简单的组合图形,会把组合图形分割成学过的平面图形并计算出面积,渗透转化思想。

  2、综合运用平面图形面积计算的知识,感受解决问题策略多样性,培养学生尝试选用简便方法解决问题的意识。

  3、培养学生的认真观察、合作学习、独立思考的能力,进一步发展学生的。空间观念,激发学生探索数学问题的积极性。

  教学重点:能根据组合图形的特点,有效地选择计算方法。教学难点:算面积时,能结合生活实际,把组合图形有效地转化成已学过的图形。

  教具准备:课件、卡纸。教学过程:

  一、游戏导入

  1、玩摸一摸的游戏,看摸出的是什么图形,说出它的名称和面积的计算方法?让学生回答后把它贴在黑板上。

  2、玩拼一拼的`游戏,让学生至少选择其中的两个图形把它组合在一起,看看会是什么图形?

  3、找出它们的共同点:都是由简单的图形组合成的,像这样的图形叫做组合图形。随即板书:组合图形。

  【设计意图:通过游戏的形式既复习了简单的平面图形面积的计算方法,又使学生在头脑中对组合图形产生了感性认识,同时还能激发学生的学习兴趣。】

  二、探究新知

  (一)组合图形的分割

  1、课件展示组合图形,你能一眼就看出它是由哪些图形组成的吗?

  让学生回答后总结:为了能够更清楚地看出是由哪些图形组合而成的,可以在原图上画上辅助线(用虚线)。

  2、让学生独立分割几个简单的组合图形并交流展示。

  【设计意图:为学生能够算出简单的组合图形面积做铺垫,学生用不同的方法分解,体现分法的多样性。】

  (二)组合图形的面积

  1、小组合作学习。要求:先说一说可以怎么画辅助线,再试着分别用不同的方法来算一算它的面积,算完后互相检查检查。

  2、交流展示。

  3、总结提升。

  方法:分割法(求和),添补法(求差),渗透转化的思想。图形分割要合理,分得越简洁,解决问题的方法就越简便,还要考虑到已知条件,如果分后已知条件都找不到了,就肯定算不出组合图形的面积。

  【设计意图:培养学生认真观察、动脑思考和合作能力,鼓励学生用不同的方法进行计算,开拓思维,并学会根据实际情况选择自己喜欢而又简便的方法进行计算。】

  (三)练习巩固

  1、计算简单组合图形的面积,独立完成。

  2、交流展示。

  (四)拓展提升

  1、出示问题:如下图,门上有一块边长的正方形玻璃,如果每平方米大约要千克油漆,把这道门漆好,大约要准备多少千克油漆?

  2、分析要注意的问题:门上的玻璃不刷漆,要算出刷漆的面积得先算出整个长方形的面积再减去中间小正方形的面积,还要考虑到门的两面都要刷漆。

  【设计意图:通过解决实际问题,感受数学知识在生活中的灵活应用,体现了数学“源于生活,用于生活”的教育理念。】

  全课解析:

  本节课是在学生学习了基本平面图形面积的基础上进行教学的。在教学过程中,体现以学生为主体、教师为主导的教学理念。以充分发挥学生主体地位为主线,以培养学生能力为宗旨展开教学,具体体现以下三点:

  一、动手操作,理解概念。

  通过学生自己摆一摆,明白什么样的图形是组合图形。通过课件展示,和学生动手分割,使学生感知生活中许多实物的表面都是由几个简单图形组成的,使学生进一步加深对组合图形概念的理解,体现数学知识与现实的联系。

  二、探究方法,尝试应用。

  以计算简单组合图形的面积为载体,以小组合作学习为方法,引导学生通过观察图形、动脑思考、说一说、分一分、算一算、汇报交流、总结提升等过程,探究出组合图形面积的计算方法,体现重视学生的思维过程;体现算法多样性,为学生提供充分的参与空间;体现对学生思维能力的培养,发展学生的空间观念,提高学生解决问题的能力。

  三、灵活应用,培养能力。

  紧密联系生活实际,通过算墙面面积和给门刷漆这两个不同层次的问题,提高学生结合生活实际灵活解决问题能力,发展学生的空间观念和多角度思考问题的能力。

组合图形的面积教学设计9

  教学内容:

  人教版小学数学五年级上册第五单元《组合图形面积》。

  教学目标:

  1、让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  2、感受计算组合图形面积的必要性,产生积极的数学学习情感。渗透转化的数学思想和方法。

  教学重难点及关键:

  1、重点:掌握组合图形面积的计算方法。

  2、难点:理解计算组合图形面积的多种方法。

  3、关键:学会运用“分割”与“添补”的方法计算组合图形的面积。

  教学过程:

  一、复习回顾,揭示课题

  1、同学们,我们学过哪些平面图形?它们的面积计算公式是怎么样的?

  2、出示两幅由七巧板拼成的图形,你们能看出它们分别是由哪些图形拼成的吗?像这样由几种简单图形组合而成的图形,我们就把它们叫做组合图形。

  3、组合图形在我们生活中的应用很广泛,今天,我们就结合一个生活中的例子来学习组合图形的面积计算。(板书:组合图形的面积计算)

  二、自主探索组合图形面积

  1、出示计算客厅面积问题:

  小华家新买了住房,计划在客厅铺地板,请你算一算他家客厅的面积是多少平方米?

  2、请学生们观察这个图形,然后自己先想一想该怎么计算?

  3、小组合作交流,讨论解决组合图形面积计算问题。

  学生可能出现“分割法”和“添补法”

  “分割法”即将上述图形分割成几个基本图形。

  4、讨论“分割法”

  1)对于“分割法”需要与学生讨论其合理性,要让学生明确:分割的图形越简洁,其解题的方法也将越简单。

  2)要考虑分割的图形与所给条件的关系。有些图形分割后找不到相关的条件就是失败的。

  5、讨论“添补法”

  1)为什么要补上一块?

  2)补上一块后计算的方法是怎样的?

  (让学生都理解这一算法)

  6、先归纳出两大类的方法“合并求和”、“去空求差”。

  小结:谁来总结一下,组合图形的面积应该怎么计算?

  计算组合图形的面积,我们一般是先把它们分割成基本图形,如长方形、正方形、三角形、梯形等,然后再用“合并求和或去空求差”的方法来计算它们的面积。

  看来同学们学得都很不错,现在老师还有几道题想考考大家。

  三、实际应用

  1、先来一题热身题,出示书本试一试。

  2、一展身手,挑战开始。

  右图表示的是一间房子侧面墙的形状,它的`面积是多少平方米?

  可以采取学生独立解决与合作交流的形式

  如果你不会做,可以和你的同桌讨论交流一下。

  3、挑战本领

  一张硬纸板剪下4个边长是4厘米的小正方形后,可以做成一个没有盖子的盒子。这张硬纸板还剩下多大的面积?

  可以采取学生独立解决与合作交流的形式

  4、求图形阴影部分的面积。

  5、有两个边长是8cm的正方形放在桌面上,求被盖住的桌面的面积。(机动)

  可以先四人小组讨论,然后在进行计算。

  四、课堂总结

  在日常生产和生活中,有些多边形的面积不能直接用公式计算,可以把它划分成几个已经学过的图形,先分别计算它们的面积,再求出这个多边形的面积。

组合图形的面积教学设计10

  设计理念:

  数学课的教学应当以注重引导学生亲历数学知识探究过程、突出思维训练为主要目标。主要设计理念是:一是以学生为课堂学习的主体,关注学生已有的学习基础和学习经验,选择适合学生的学习素材、设计适合学生的教学活动,让学生自主的投入学习,教师是学生课堂学习的引导者、合作者。二是以活动为课堂教学的载体,注重学习情境创设,引导学生主动进行观察、实验、猜测、验证、推理与交流等数学活动,去探究数学知识,亲历数学知识探索过程,感受成功的快乐。三是以问题为思维训练的源泉,教学中注重引导学生发现问题、提出问题和解决问题,在解决问题中激活思维。四是以生活为学习数学的基础,数学生活化,让学生在生活中感知数学知识,从生活中发现数学问题,在生活经验的基础上解决数学问题,并用所学知识解决生活中实际问题。

  学情分析:

  设计这节课的教学,教学对象是本校五(3)班59名学生。这个班的学生对课前教师布置的准备活动能积极准备,对学习数学有比较浓厚的兴趣,思维活跃,有自主探索知识的学习习惯,比如要求用基本图形(长方形、正方形、三角形、平行四边形、梯形等)展开想象拼图案,就能很好的准备。大部分学生有较好的数学知识基础和学习数学经验,善于合作,勇于面对知识挑战,有自主探究知识的激情,但也有少部分学生数学基础差,家长和学生本人都学得好坏无所谓,参与探究学习比较困难,不能按要求完成学习任务,比如他们在探索活动中不去认真感知、猜测、实验和思考,把自己置于旁观者得位置,不能达到预期的学习效果。总体看他们爱学数学,爱参与探究,希望有学习成功的快乐。

  内容分析:

  《组合图形的面积》是义务教育课程标准实验教科书(北师大版)五年级上册数学第五单元中的一节内容(北师大版义务教育课程标准实验教科书五年级上册75——76页的内容,这一内容是在学生已经学习了长方形与正方形,平行四边形、三角形与梯形的面积计算的基础上,进一步探讨研究图形的面积,也是日常生活中经常需要解决的问题。

  教学目标:

  知识目标:

  1、在自主探索的活动中,理解计算组合图形面积的多种方法,并渗透转化的数学思想。

  2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  3、能运用所学的知识,解决生活中组合图形的实际问题。

  情感态度价值观:在有效的情境中激发学生学习的兴趣的主动性,培养热爱数学的思想感情。

  教学重、难点:

  1、教学重点:学生能够通过自己的动手操作,掌握用分割法和添补法求组合图形面积的计算方法。

  2、教学难点:理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的条件,割、补成学过的图形,选择最适当的方法求组合图形的面积。

  教学策略:

  以学生利用基本图形拼的图案将学生引入学习情境,以课件展示教师拼的图案引发学习问题,以课件中的图片欣赏让学生感受组合图形源于生活,以“剪——拼——议”实践活动学习解决问题的方法和探究知识的方法,以解决生活中实际问题强化知识的应用。

  教学准备:多媒体课件和组合图形图片。

  教学过程:

  一、激趣导入、复习铺垫

  1、欣赏图片

  2、动手拼

  3、展示作品,全班交流

  4、教师总结,揭示课题

  二、创设情境、探究新知

  出示课件:米奇的妙妙屋正在装修但遇到了几个难题,需要同学帮助,你们愿意吗?难题一:米奇打算给客厅(如图)铺上瓷砖,至少需要买多少平方米的砖呢?

  1、估计地板的面积,板书数据

  2、采用不同的方法求客厅的面积。

  那实际上我们铺地板的时候,买多了浪费,买少了还要再买太麻烦了,那怎么办呢?

  同学们观察一下这个图形,这是一个(组合图形),这样的图形的面积我们学过了吗?那么怎么办?

  其他同学也是这样想的吗?

  这就是我们今天所要探究的问题组合图形的面积(板书:面积)

  同学们打算用什么方法求它的面积?(停顿)

  很多同学都有自己的想法

  请把你的想法用虚线在客厅平面图中表示出来。再与小组成员说说自己的想法

  生动手画图。

  汇报交流:同学们做好了吗?刚才看同学们讨论得非常热烈,能感觉到咱们班的同学都很喜欢动脑筋,现在谁来说说你的想法?

  3、师生归纳方法并比较

  观察找特点

  根据学生的汇报小结三种基本方法(板书)(其实不管是用割还是补甚至是割补,我们都是为了一个共同的目的,那就是把这个组合图形转化成以学过的'平面图形。)

  引导比较,找出最简单的方法(是啊,分成的图形越少,计算面积时就越简便,所以我们以后在计算组合图形的面积时要学会选择简便的方法进行计算。)

  学生独立计算。(现在你会计算这个组合图形的面积吗?)

  汇报交流

  引导比较(同学们现在我们已经计算出了这个组合图形的面积,请把计算出的正确答案与刚才同学们估计的数据比较一下,有的估计偏大了有的偏小了)

  4、归纳算法

  刚才我们帮米奇计算出了客厅的面积即组合图形的面积。现在一起来回忆计算组合图形面积的计算过程。

  师生齐说:刚才我们先用割或补、割补的方法把组合图形转化成了以前学过的平面图形,然后找出计算每个小图形所需的条件,再计算出组合图形的面积。

  三、实际应用、解决问题

  1、计算墙壁的面积

  观察图形——选择方法——独立计算——汇报交流

  老师知道同学们一定还有很多不同的计算方法,但你们的答案和这两位同学一样吗?

  是啊,同一个组合图形可以用多种不同的方法来计算面积,但都不能改变答案的唯一性。

  2、求门油漆的面积。

  同学们以自己的聪明才智帮米奇又解决了一个难题,可还得请你们再帮再一个忙,油漆6扇这样的门,(1)需要油漆的面积一共是多少?(单位:米)(2)如果油漆每平方米需要花费5元,那么花费需要多少元?

  这里有什么需要注意的地方吗?谁来给同学们提醒一下?

  生独立算完后指名汇报。

  和他方法一样的请举手?为什么你们都选择添补的方法呢?

  是啊,计算组合图形的面积并不是所有的方法都适用的,咱们要学会根据条件选择合理的方法。

  四、归纳小结、提升知识

  这节课我们主要学习了什么内容经过同学们认真的思考研究讨论,我们总结了很多种方法,有分割法,添补法,割补法。

组合图形的面积教学设计11

  教学目标:

  1、巩固已学平面图形特征的认识,学会用割(加)、补(减)等方法求组合图形的面积

  2、通过动手、动脑、剪剪、拼拼和想象,培养学生动手操作的技能,发展观察能力、空间观念和思维的灵活性。

  3、利用七巧板组合图形,并求出面积。教学重、难点:用割补法求组合图形的面积

  教学准备:小剪刀一把

  长方形纸若干张

  教学过程:

  一、剪纸中得出组合图形的概念

  师:大家跟我一起拿出一张长方形纸片:你能用一刀剪出两个其他图形吗?动手试试。(生剪师巡视,主要分清把长方形剪成两个基本图形或一个基本图形和一个不规则图形的同学。)

  生汇报:我把长方形分成了一个三角形和梯形?(说面积公式)

  我把长方形分成了一个三角形和??(说不清楚是什么图形)师展示这个图形:

  (一个长方形的角落剪去一个三角形)师:这个图形叫什么图形呢?

  方案1:生自己回答:这是一个长方形和梯形组成的。

  师:哦!你是怎么分的?还可以怎么分?(让学生动手折一折)

  方案2:生不能回答,师提示:我们刚才把一个长方形分成了

  一个三角形和一个梯形,还把它分成了两个长方形,还有??那这个图形,我们可以把它分成我们已经学过的图形吗?(生回答,并折给大家看)

  最后把图形粘贴在黑板上得出:像这样由几个基本图形组成的,我们把它叫作组合图形,这节课我们重点就来研究组合图形的面积(板书组合图形的面积)

  二、求组合图形的面积

  1、重点突破

  师:如果老师临时给这个组合图形的边标上数据,(边说边根据图形的长短标上数据)你能求出这个组合图形的面积吗?自己动手算一算,有困难的可以请教同桌和老师。

  展示学生的做法,并请他说说思考过程。

  师:如果要你求这个组合图形的面积,你可以怎样求?

  生汇报:先把它分割成长方形和梯形,然后把它们的面积加起来??师:用剪刀剪的方法有的时候不太方便操作,我们可以用加辅助线的方法来把组合图形进行分割。(辅助线用虚线来画)

  师:还有其他方法吗?

  (生如果没有得出用补的方法)师拿出剪下的三角形问:这个组合图形,刚才是怎么得到的?能给你是吗启发吗?(得出用长方形面积减去三角形的面积)板书:贴+写

  师小结:同学们真能干,有的把组合图形分割成我们学过的几个基本图形,再把它们的面积加起来,有的补上一个我们学过的基本图形,然后面积相减,用了很多种方法,但有一点是相同的,你能看出来是什么吗?(求出来的面积是一样的。)

  2、基本练习

  老师遇到了一个生活中的实际问题,想请同学们两人一组帮忙解答,看看哪个小组的方法最多?(汇报)

  在以后求组合图形面积的时候,你可以选择你认为最简单的方法来求。

  3、实践活动

  师:其实,在我们的身边很多物体的面都是组合图形,你能找出来吗?

  出示队旗:其实,我们的中队旗就是一个组合图形。

  (1)估一估:请你估一估,我们中队旗的面积大约是多少?想一想,找同学来回答

  (2)议一议:如果要你求它的面积,你会用什么办法计算?用你的方法计算需要测量哪些边的长度呢?

  (3)算一算:为了节省时间,有些数据我已经帮你们量过了(出示带有数据的中队旗)

  用你认为简单的方法进行计算。先做好的小组上来板书。

  反馈:你们是怎么思考的?

  师:跟你们估计的结果比较一下,看谁估计的最正确,掌声送给他!

  三、四人小组

  利用手中的七巧板来拼出各种图案来,并求出你拼出的图案的'面积。四通过这节课的学习,你有什么收获?

  希望同学们把我们所学的知识充分的利用到我们的生活当中,去解决生活中出现的有关问题。

  教学后记:

  教学中我充分发挥学生的主体作用,相信学生的能力,热情鼓励学生的探索活动,给予学生充足的时间和思维空间。由学生合作探索简单组合图形面积的计算方法,肯定学生积极的探究活动,使学生有更多的发展空间,尽最大限度地发展学生的观察思考探究能力,增强了学生学习数学的兴趣。在探索组合图形面积的过程中,注重让学生通过动手操作、观察、推理等手段,分析探索组合图形,利用已有的知识解决问题,达到了良好的教学效果。

组合图形的面积教学设计12

  教学内容:教科书p92~93页。

  教学目标:

  1. 使学生结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积。

  2. 综合运用平面图形面积计算的知识,进一步发展学生的空间观念。

  3. 培养学生认真观察、独立思考、合作交流的能力和创新意识。

  教学重点:掌握计算组合图形面积的方法。

  教学难点:如何把组合图形变成已学过的平面图形来计算面积。

  教具准备:课件、可拼组的几个简单平面图形。

  教学过程:

  一. 激趣导入

  1.逐一出示学过的平面图形,说出它的名称及面积计算公式。随后将图形张贴在黑板上,组成几幅美丽的图案。

  2.观察这些图形,它们与以前学过的平面图形有什么不同?

  小结:这些图形都是由几个简单的平面图形组成的,我们把这样的图形叫做组合图形。(板书:组合图形)

  3.说一说生活中那些地方有组合图形?它们都是由哪些图形组成的?(学生自由说)

  4.认识了组合图形,那么大家还想了解有关组合图形的哪些知识呢?(周长、面积……)这节课我们重点学习组合图形的'面积。(板书:面积)

  二. 探究新知

  1.由图1引出例1.

  (课件出示)右图表示的是一间房子侧面墙的形状,它的面积是多少平方米?

  (1) 认真观察图形,先独立思考,然后把自己的想法和同桌说说。

  (2) 汇报交流。(结合课件演示)

  ① 把组合图形分成一个三角形和一个正方形。

  算式:5×5+5×2÷2

  ② 把组合图形分成两个完全一样的梯形。

  算式:(5+5+2)×(5÷2)÷2×2

  (3)你认为两种方法哪种比较简便?

  师:在计算组合图形的面积时有多种方法,同学们要认真观察、多动脑筋,选择自己喜欢而又简便的方法进行计算。

  (4) 通过学习,你认为可以怎样计算组合图形的面积?

  学生自由发言,形成初步认识:可以把组合图形分割成几个简单的平面图形,分别求出它们的面积再相加。(板书:分割法)

  (5) 任意选择黑板上的一个组合图形说计算方法。

  2.出示例2. (课件)做一面这样的中队旗要用多少红布呢?(先不出现数字)

  (1)小组讨论。

  (2)汇报交流。

  ①分成两个梯形。

  ②分成一个正方形和两个三角形。

  ③用长方形面积减一个三角形面积。

  ④分成一个梯形和一个三角形。

  ……

  (3)提供数据,并选择你喜欢的方法进行计算。

  (4)比较评价。

  (5)你对计算组合图形的面积有了什么新认识?

  小结:根据不同的组合图形,除了用分割法求面积外,还可以先把组合图形添补完整,求出总面积再减去添补上的面积,或用割补法求面积。(板书:添补法、割补法)

  三.巩固拓展

  谈话引出校园建设新规划。

  1.前往综合大楼。求下面指示牌的面积。

  2.这是准备新建综合大楼的一块空地,你能帮学校算算这块地的面积有多大吗?你能想出几种算法?

  3.小小设计师:

  学校想在综合大楼前建一个漂亮的多边形大花坛,种上红、黄、蓝、三种颜色的花,请你设计一种方案,用上学过的图形,并求出三种花的种植面积。

  四.总结全课

  这节课你有什么收获?你觉得最开心的是什么?

组合图形的面积教学设计13

  教学目标:

  1、知识与技能:使学生理解组合图形的含义,理解并掌握组合图形的计算方法,并能正确地计算组合图形的面积,并能运用所学的知识,解决生活中有关组合图形面积的实际问题。

  2、过程与方法:自主探究、合作交流。让学生在自主探索的基础上进行合作交流,培养学生的观察能力、动手操作能力和逻辑思维能力。

  3、情感态度与价值观:结合具体的题例,使学生感受到计算组合图形面积的必要性,产生积极的数学学习情感。

  教学重、难点:

  1、教学重点:学生能够通过自己的动手操作,掌握用割、补法求组合图形面积的.计算方法。

  2、教学难点:割补后找出相应的计算数据解决问题。教学准备:各种基本图形若干、学生作业纸、投影

  教学过程:

  一、复习引入

  1、我们以前学习了哪些基本的平面图形?

  2、口答:说出每个图形的面积算式。

  3、引入:课件展示用基本图形拼成的火箭、鱼的图形,从而引出组合图形的含义。

  4、出示课题:组合图形的面积

  二、探索新知

  1、动画展示生活中的组合图形,让学生感知数学来源于生活。

  2、完成任务一:小华家新买了房子,计划在客厅铺地板,请你算一算他家要买多大面积的地板。

  3、小组合作探索算法后派学生代表上台展示算法。

  4、归纳算法

  师:通过刚才的讨论与汇报,你认为应该怎么计算组合图形的面积,都有一些什么方法?

  师引导学生认识:计算组合图形的面积主要可以采用“分割”与“添补”(结合黑板上面的解法进行归纳)的方法进行计算。

  5、运用刚刚学到的这两种算组合图形面积的计算方法完成任务二

  20cm 26cm

  a、小组合作完成

  b、派代表上台汇报

  6、独立完成任务三

  三、全课小结

  师:通过本节课的学习,你学会了什么?(组合图形的面积)组合图形的面积是怎么计算的,用的是什么方法?(分割法、添补法)不管我们是用分割法还是添补法来计算组合图形的面积,其实我们最后还是要把问题变得(简单)。

组合图形的面积教学设计14

  教学内容:

  苏教版小学数学第十册第106页例10及练一练,练习十九第6—9题。

  教学设计构想:

  在《圆》这个单元的教学中,圆是从生活中引入,进而探讨圆的特征及各部分名称,和生活中为什么很多物体都是圆形的等等,使学生感知圆在生活中无处不在,圆是美丽的。再探讨了求圆的周长计算方法和求圆的面积计算的方法后,并将之运用到生活中解决了很多生活中的实际问题,使学生体会到数学来源于生活,高于生活,再回归到生活中能帮助我们去解决实际问题,提高学习能动性。

  《组合图形的面积》的设计理念依然是——由生活中的组合图形引入新课,进而回归到生活中去解决圆环形铁片的面积和窗户的面积以及光盘的面积。同时本节课的教学设计突出数学思想方法的渗透,让学生积极主动参与知识的形成过程,重视将解决问题的策略、技巧潜移默化的交给学生,让学生获得了数学思想方法,并培养了学生探索问题的能力。

  教材分析:

  本节课主要让学生利用已经掌握的圆的面积及其它图形面积公式计算组合图形面积。例题选择的素材是计算圆环铁片的面积。教材着重通过呈现解决问题的步骤引导学生掌握求圆环面积的基本思路。教材先让学生按步骤解答问题,然后启发学生联系学过的运算律探索简便计算方法。“试一试”和“练一练”中的组合图形都是由两个基本图形组合而成,计算这些组合图形的面积,有时需要计算两个基本图形的面积之差,有时需要计算两个基本图形的面积之和。

  学情分析:

  《组合图形的面积》是在学生认识了圆的特征、圆各部分名称、掌握了圆的周长计算和圆的面积计算方法的基础上,进行组合图形面积计算的教学的。

  教学目标:

  1、让学生结合具体情境认识圆环,掌握圆环的特征,掌握计算圆环的面积的方法。能正确计算简单的有关圆的组合图形的面积。

  2、通过操作、探索、发现、交流等活动,培养学生独立思考、合作创新意识和灵活运用知识解决问题的能力,进一步发展学生的空间观念和交流能力。

  3、在解决实际问题的过程中,提高学生对数学的好奇心和求知欲,感受数学的魅力,体会数学的应用价值。

  教学重点:

  探索并掌握组合图形的面积计算方法。

  教学难点:

  灵活地把组合图形转化为所学过的基本图形,正确计算。

  教学准备:

  PPT课件,圆规、硬纸、剪刀(学生也准备)

  教学过程:

  一、复习导入

  1、师:前面学习了圆的面积计算,说说圆面积的计算公式?(板书)回顾一下我们还学习了哪些平面图形面积的计算公式?(板书)

  2、引入新课:生活中我们不但能看到圆形的物体,还常常会看到由圆和其他图形组成的图形(出示课件),像这样由几个简单的图形组合而成的图形叫组合图形。(板书:组合图形)组合图形在日常生活中有着广泛的应用,认识了生活中的组合图形,这节课我们将利用已有的知识一起来研究有关组合图形面积的计算(出示课题)。

  [设计意图:在复习所学的基本图形面积计算的基础上,通过生活中的组合图形引入新课,使学在头脑中对组合图形产生感性的认识。为下面学习求组合图形的面积打下基础。]

  二、探索新知

  1、认识圆环

  (1)出示圆环形铁片(课件)

  问:知道这个铁片是什么图形吗?仔细观察:圆环有些什么特征呢,谁来向大家介绍一下(生介绍圆环)

  师对学生的回答给与评价。明确:圆环是两个圆心相同、半径不相等的圆形所组成的宽度相等的图形。

  (2)联系生活

  同学们想一想:生活中哪些地方还有圆环?

  2、做圆环

  (1)谈话:我们认识了圆环,现在你能用准备好的材料动手做一个圆环吗?

  指名学生展示自己做的圆环,并向大家介绍做圆环的方法。

  (2)师拿出自己做的圆环并小结做圆环的方法。

  请生指出圆环的面积是哪部分。

  [设计意图:学生在认识了圆环的基础上,引导学生找生活中的圆环,并动手做出圆环,由具体的实物抽象出几何图形,不但让学生经历知识的形成过程,使学生能直观地发现、理解并掌握圆环面积计算方法,而且对数学知识与生活的紧密联系有了一定的认识。]

  3、学习例10

  (1)在圆环形铁片图的右边出示例10(课件)

  请生读题,你获得了哪些信息?

  问:求这个铁片的面积,就是求什么形状的面积?

  师:会求这个铁片的面积吗?(生尝试做)指名板演,师巡视,发现有用简便做法的请上台板演(如果没有用简便方法做的,在第一种方法反馈之后,可启发学生有简便做法吗?)。

  同桌交流求面积的方法。

  (2)反馈第一种基本方法,请板演学生当小老师,说说自己的解题思路。

  板书:外圆面积—内圆面积=圆环面积。

  反馈第二种方法,请板演学生说说你是怎样想的?

  两种方法有什么联系?(运用乘法分配律)

  (3)师生共同小结:计算圆环面积的基本方法是从外圆面积中减去内圆面积,还可以进行简便计算。如果用R表示外圆半径,用r表示内圆半径,那么,求圆环面积的计算公式就是:S=πR2—πr2或S=π(R2—r2)(板书)

  [设计意图:让学生经历圆环面积的简便算法的形成过程,鼓励学生用不同的方法进行计算,并引导学生发现简便方法,体现两种方法之间的内在联系。]

  4、对比,归纳方法

  出示大小两圆拼成的'新图形,与圆环图进行对比(课件),请学生说说这两题的联系与区别。归纳此类组合图形面积的计算方法(求面积之差)。

  5、尝试“试一试”(出示课件)

  (1)出示“试一试”,学生小组讨论:

  窗户的形状是由哪些基本图形组合而成的?

  要求窗户的面积就是求什么?

  半圆和正方形有什么相关联的地方?

  半圆面积该怎样求?

  (2)再全班交流。

  (3)学生尝试列式计算,指名板演。

  (4)反馈,明确:正方形的边长就是半圆的直径。交流解题方法,重点强调半圆面积必须是用整圆的面积除以2(别忘了除以2)。

  5、观察比较,小结方法

  (1)讨论:例题中的圆环和“试一试”中的窗户,两题中的图形

  都属于组合图形,两个图形的组合方式有什么不同的地方?窗户和圆环在求面积上有什么不同?你发现他们在解决问题的思路有什么相同的地方?有什么不同的地方?

  (2)组织全班交流。(圆环是大圆里挖去小圆,窗户是半圆形和正方形两个图形拼加。求圆环面积是大圆面积减去小圆面积,求窗户面积是半圆形面积加上正方形面积。解题思路相同之处都是要先算出组合图形中的基本图形的面积,不同之处是一个是基本图形的面积相减,一个是基本图形的面积相加。)

  (3)小结归纳组合图形面积计算基本方法。

  师:圆、半圆或其它基本的平面图形组合在一起,产生组合图形,在计算组合图形面积的时候,先看清这个组合图形是由哪些基本图形组成的,再根据组合方式决定把基本图形的面积相加还是基本图形的面积相减。

  [设计意图:引导学生充分讨论交流,根据讨论的结果,总结求组合图形的方法,注重将解决问题的策略、技巧潜移默化的交给学生,让每个学生都参与到数学活动中来。]

  三、运用巩固

  1、基本练习:练一练(课件出示)

  思考:(1)下面的组合图形的需要计算哪些基本图形的面积?

  (2)涂色部分面积怎样求?

  (3)左图,两个基本图形有什么联系?右图呢?

  学生先同位交流,再全班交流,(明确:左图中长方形的宽与圆的半径相等,右图中半圆的直径是三角形的高。)然后每人各选一题列式计算。

  2、综合拓展练习:练习十九第6题(课件出示)

  (1)计算下面组合图形涂色部分的面积各需要需要哪些条件?

  (2)涂色部分面积怎样求?

  学生先同位交流,再全班交流:说说计算需要测量哪些数据,再交流算法。

  3、眼力大比拼:三个正方形涂色部分的面积相等吗?为什么?(练习十九第7题课件出示)

  指名学生根据图形作出直观的判断,并说说判断的方法。

  四、总结交流

  今天我们一起学习了什么知识?你有哪些收获?在求组合图形的面积时一般需要注意什么?有什么宝贵的解题经验想和大家分享?

  五、实践延伸

  出示光盘,同学们你能想办法算出(自己家里的)光盘的面积吗?课后完成。

  [设计意图:练习设计体现了针对性、层次性、综合性和实践性。最后的课外延伸环节,让学生计算自己熟悉的光盘的面积,可以提高学生运用数学知识解决实际问题的能力,感受到数学在生活中的应用价值和数学的魅力所在。]

  附:板书设计

  组合图形面积

  基本图形的面积相加或相减

  例:外圆面积—内圆面积=圆环面积。

  S=πR2—πr2

  S=π(R2—r2)

组合图形的面积教学设计15

  教学过程:

  一、认识组合图形。

  1、师生谈话导入:什么是组合图形?

  (1)出示火箭模型的平面图。观察一下,你有什么发现?

  (2)像长方形、三角形、梯形等这些都是我们已经认识的简单的平面图形,那么这个图形与它们有什么关系呢?

  (3)揭示名称与含义:组合图形是由几个简单的平面图形组合而成的。

  2、在我们身边有不少物体表面的形状是组合图形。说一说,这些组合图形是由哪些图形组成的?

  3、学生自己试举例说明。

  二、计算组合图形的面积。

  1、揭示课题。

  (1)出示中队旗,计算它的面积。

  80cm

  20cm

  30cm

  30cm

  (2)谈话:中队旗是什么形状?要求做一面队旗要多少布就是求它的什么?怎样求组合图形的面积,下面我们一起来研究这个问题。(出示课题:组合图形的面积)

  2、学生尝试。

  (1)学生讨论算法。

  (2)独立计算。鼓励用不同的做法。

  演板:

  (80-20+80)×30÷280×(30+30)-(30+30)×20÷2

  =4200(平方厘米)=4200(平方厘米)

  (80-20)×(80-20)+30×20÷2×2

  =4200(平方厘米)

  (3)比较:哪种方法比较简便?

  2、小结:用哪些方法可以计算组合图形的面积?

  三、巩固练习。

  1、计算花坛的面积。

  让学生感受:不是任何分解都可以计算的,要根据条件进行分解。

  2、求火箭平面图的面积。

  3、选一个求字母“l”和“n”的面积。

  四、总结。

  你有什么感受?

  五、作业。(略)

  六、板书:

  组合图形的面积

  (80-20+80)×30÷280×(30+30)(80-20)×(80-20)

  =4200(平方厘米)-(30+30)×20÷2+30×20÷2×2

  =4200(平方厘米)=4200(平方厘米)

  课后反思:

  学生的经验和活动是他们学习空间图形的基础。他们对组合图形的认知是通过观察获得的,关于组合图形的面积计算又是建立在认知的基础上。因此本课的教学设计,是根据数学新课标的基本理念,铺设学习情境,让学生主动参与,灵活运用积累的经验解决问题,体现了数学学习是“经验”、“活动”、“思考”、“再创造”的特点。

  一、导入——铺设学习情境。

  《数学课程标准》在课程实施建议中明确指出:“数学活动要紧密联系学生的生活实际,创设各种情境,为学生提供从事数学活动的机会,激发对数学的兴趣,以及学好数学的愿望。”学生的学习,往往带着浓厚的感情色彩,在熟悉的情境中,他们就能够自觉地、顺利地参与到学习中来。在本节课中,先让学生观察火箭模型的平面图,让他们说说有什么发现,激活他们已有的知识经验,通过感受由几个简单图形的组合,揭示组合图形的含义。再让他们分析身边物体表面中的组合图形,把数学与生活紧密联系起来,激发学习的兴趣。

  二、尝试——开启创造之门。

  弗莱登塔尔认为,学生学习数学是一个有指导的再创造。数学学习的本质是学生的再创造。在本课的教学过程中,有意识的为学生提供具有充分再创造的通道,激励了学生进行再创造的活动。课堂中采取了这样一些策略:设计富有挑战性的.问题,激发学生主动思考和创造的愿望。为学生提供比较充足的探索与创造的时间、空间,让学生尽量释放创造的潜能。如:计算中队旗的面积时,要求学生先仔细观察这个图形,然后这样设问:“你能自己试着来解决这个问题吗?”学生经过自主的思考,能创造出不少的方法来计算组合图形的面积。课堂上学生在自身的自主探索中或者在与同伴的合作交流中,放飞着思维,张扬着个性,在互补反思中得到共同的提高,充分体验到了成功的乐趣,从而真正意义上的成为了学习的主人。还有一个学生在其他不同的方法后,又提出他独特的观点:把组合图形分成两个梯形,再把两个梯形拼成一个长方形来计算它的面积。他的想法恰恰运用了“出入相补”的原理。这正是知识、方法融会贯通的体现。

  “给我一个杠杆,我可以撬起地球”,我们还有什么理由不相信学生惊人的创造力呢?

  三、练习促进动态生成。

  让学生体会到数学的价值,力求人人学有价值的数学,以满足学生适应未来学习、生活的需要。在练习的设计中,我安排了这样三个层次:第一、只列式不计算。让学生明确求组合图形的面积,要根据数据进行分解,不是所有的分解都能进行计算的。第二、解决具体问题,计算火箭模型的平面图的面积。第三、解决实际问题,练习设计打破学科界限,让学生喊出英文单词“lion”,然后在英文乐曲中,选择计算“l”或“n”的面积。学生学得趣味

【组合图形的面积教学设计】相关文章:

说课稿:《组合图形面积》12-17

圆的面积教学设计04-26

《圆的面积》教学设计03-11

《圆的面积》的教学设计05-21

《圆柱的表面积》教学设计06-14

圆柱的表面积优秀教学设计07-23

《三角形的面积》教学设计04-20

梯形的面积教学反思04-14

圆的面积教学反思04-12