青蓝网>教学资料>教学设计>高中数学教学设计

高中数学教学设计

时间:2024-04-15 12:34:58 教学设计 我要投稿

高中数学教学设计

  作为一名教师,往往需要进行教学设计编写工作,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。那要怎么写好教学设计呢?下面是小编收集整理的高中数学教学设计,仅供参考,欢迎大家阅读。

高中数学教学设计

高中数学教学设计1

  一、目标

  1.知识与技能

  (1)理解流程图的顺序结构和选择结构。

  (2)能用字语言表示算法,并能将算法用顺序结构和选择结构表示简单的流程图

  2.过程与方法

  学生通过模仿、操作、探索、经历设计流程图表达解决问题的过程,理解流程图的结构。

  3情感、态度与价值观

  学生通过动手作图,.用自然语言表示算法,用图表示算法。进一步体会算法的基本思想——程序化思想,在归纳概括中培养学生的逻辑思维能力。

  二、重点、难点

  重点:算法的顺序结构与选择结构。

  难点:用含有选择结构的流程图表示算法。

  三、学法与教学用具

  学法:学生通过动手作图,.用自然语言表示算法,用图表示算法,体会到用流程图表示算法,简洁、清晰、直观、便于检查,经历设计流程图表达解决问题的过程。进而学习顺序结构和选择结构表示简单的流程图。

  教学用具:尺规作图工具,多媒体。

  四、教学思路

  (一)、问题引入 揭示题

  例1 尺规作图,确定线段的`一个5等分点。

  要求:同桌一人作图,一人写算法,并请学生说出答案。

  提问:用字语言写出算法有何感受?

  引导学生体验到:显得冗长,不方便、不简洁。

  教师说明:为了使算法的表述简洁、清晰、直观、便于检查,我们今天学习用一些通用图型符号构成一张图即流程图表示算法。

  本节要学习的是顺序结构与选择结构。

  右图即是同流程图表示的算法。

  (二)、观察类比 理解题

  1、 投影介绍流程图的符号、名称及功能说明。

  符号 符号名称 功能说明

  终端框 算法开始与结束

  处理框 算法的各种处理操作

  判断框 算法的各种转移

  输入输出框 输入输出操作

  指向线 指向另一操作

  2、讲授顺序结构及选择结构的概念及流程图

  (1)顺序结构

  依照步骤依次执行的一个算法

  流程图:

  (2)选择结构

  对条进行判断决定后面的步骤的结构

  流程图:

  3.用自然语言表示算法与用流程图表示算法的比较

  (1)半径为r的圆的面积公式 当r=10时写出计算圆的面积的算法,并画出流程图。

  解:

  算法(自然语言)

  ①把10赋与r

  ②用公式 求s

  ③输出s

  流程图

  (2) 已知函数 对于每输入一个X值都得到相应的函数值,写出算法并画流程图。

  算法:(语言表示)

  ① 输入X值

  ②判断X的范围,若 ,用函数Y=x+1求函数值;否则用Y=2-x求函数值

  ③输出Y的值

  流程图

  小结:含有数学中需要分类讨论的或与分段函数有关的问题,均要用到选择结构。

  学生观察、类比、说出流程图与自然语言对比有何特点?(直观、清楚、便于检查和交流)

  (三)模仿操作 经历题

  1.用流程图表示确定线段A.B的一个16等分点

  2.分析讲解例2;

  分析:

  思考:有多少个选择结构?相应的流程图应如何表示?

  流程图:

  (四)归纳小结 巩固题

  1.顺序结构和选择结构的模式是怎样的?

  2.怎样用流程图表示算法。

  (五)练习P99 2

  (六)作业P99 1

高中数学教学设计2

  教学准备

  教学目标

  解三角形及应用举例

  教学重难点

  解三角形及应用举例

  教学过程

  一.基础知识精讲

  掌握三角形有关的定理

  利用正弦定理,可以解决以下两类问题:

  (1)已知两角和任一边,求其他两边和一角;

  (2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);利用余弦定理,可以解决以下两类问题:

  (1)已知三边,求三角;

  (2)已知两边和它们的夹角,求第三边和其他两角。

  掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题.

  二.问题讨论

  思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论.

  思维点拨::三角形中的三角变换,应灵活运用正、余弦定理.在求值时,要利用三角函数的有关性质.

  例6:在某海滨城市附近海面有一台风,据检测,当前台风中心位于城市O(如图)的东偏南方向300 km的海面P处,并以20 km / h的速度向西偏北的'方向移动,台风侵袭的范围为圆形区域,当前半径为60 km,并以10 km / h的速度不断增加,问几小时后该城市开始受到台风的侵袭。

  一. 小结:

  1.利用正弦定理,可以解决以下两类问题:

  (1)已知两角和任一边,求其他两边和一角;

  (2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);

  2.利用余弦定理,可以解决以下两类问题:

  (1)已知三边,求三角;

  (2)已知两边和它们的夹角,求第三边和其他两角。

  3.边角互化是解三角形问题常用的手段.

  三.作业:P80闯关训练

高中数学教学设计3

  一、教学目标

  1、知识目标:理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的相互转换;理解对数的运算性质,形成知识技能;

  2、能力目标:通过实例让学生认识对数的模型,让学生有能力去解决今后有关于对数的问题,同时让学生学会观察和动手,通过做练习,使学生感受到理论与实践的统一,锻炼学生的动手能力;

  3、分析目标:通过让学生分组进行探究活动,在探究中分析各种思维的技巧,掌握对数运算的重要性质。

  二、教学理念

  为了调动学生学习的积极性,使学生化被动为主动,从学习中体会快乐。本节课我引导学生从实例出发,引发学生的思考,从中认识对数的模型,体会对数的必要性。在教学重难点上,我步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地突破难点和提高教学效率。让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。

  三、教法学法分析

  1、教法分析

  新课程标准之处教师是教学的`组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下教法:实例引入法、开放式探究法、启发式引导法。

  2、学法分析

  “授人以鱼,不如授人以渔”,最有价值的知识是关于方法的知识。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:观察发现法、小组讨论法、归纳总结法。

  四、教材分析

  本节讲对数的概念和运算性质主要是为后面学习对数函数做准备。这在解决一些日常生活问题及科研中起着十分重要的作用。同时,通过对数概念的学习,对培养学生对立统一、相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义。

  五、教学重点与难点

  重点 :(1)对数的定义;

  故可以设

  m?am,n?an

  那么 mn?am?n

  由对数的定义可以得到

  logam?m,logan?n, logam?n?m?n

  将m和n分别带入,那么可以得到如下结论: logam?n?logam?logan

  可以以此为例,让学生在课堂上推导出如下运算性质的另外两个公式: 对数运算性质:

  如果a?0,且a?1,m?0,n?0,那么:

  (1)logam?n?logam?logan

  (2)loga m

  logamlogan n

  (3)logamn?nlogam(n?r) 6. 引入实例,加深对公式的理解

  例2.求下列各式的值

  (1)log2(47?25);

  (2)lg;

  解:(1) log 4 7 ? (2) lg2 5)2(

  log247log2257log245log227251 19

  lg1025 25

高中数学教学设计4

  一、单元教学内容

  (1)算法的基本概念

  (2)算法的基本结构:顺序、条件、循环结构

  (3)算法的基本语句:输入、输出、赋值、条件、循环语句

  二、单元教学内容分析

  算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。在本模块中,学生将在中学教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的`作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力。

  三、单元教学课时安排:

  1、算法的基本概念3课时

  2、程序框图与算法的基本结构5课时

  3、算法的基本语句2课时

  四、单元教学目标分析

  1、通过对解决具体问题过程与步骤的分析体会算法的思想,了解算法的含义

  2、通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中理解程序框图的三种基本逻辑结构:顺序、条件、循环结构。

  3、经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句:输入、输出、斌值、条件、循环语句,进一步体会算法的基本思想。

  4、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

  五、单元教学重点与难点分析

  1、重点

  (1)理解算法的含义

  (2)掌握算法的基本结构

  (3)会用算法语句解决简单的实际问题

  2、难点

  (1)程序框图

  (2)变量与赋值

  (3)循环结构

  (4)算法设计

  六、单元总体教学方法

  本章教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。采用这些方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。

  七、单元展开方式与特点

  1、展开方式

  自然语言→程序框图→算法语句

  2、特点

  (1)螺旋上升分层递进

  (2)整合渗透前呼后应

  (3)三线合一横向贯通

  (4)弹性处理多样选择

  八、单元教学过程分析

  1、算法基本概念教学过程分析

  对生活中的实际问题通过对解决具体问题过程与步骤的分析(喝茶,如二元一次方程组求解问题),体会算法的思想,了解算法的含义,能用自然语言描述算法。

  2、算法的流程图教学过程分析

  对生活中的实际问题通过模仿、操作、探索,经历通过设计流程图表达解决问题的过程,了解算法和程序语言的区别;在具体问题的解决过程中,理解流程图的三种基本逻辑结构:顺序、条件分支、循环,会用流程图表示算法。

  3、基本算法语句教学过程分析

  经历将具体生活中问题的流程图转化为程序语言的过程,理解表示的几种基本算法语句:赋值语句、输入语句、输出语句、条件语句、循环语句,进一步体会算法的基本思想。能用自然语言、流程图和基本算法语句表达算法,4、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

  九、单元评价设想

  1、重视对学生数学学习过程的评价

  关注学生在数学语言的学习过程中,是否对用集合语言描述数学和现实生活中的问题充满兴趣;在学习过程中,能否体会集合语言准确、简洁的特征;是否能积极、主动地发展自己运用数学语言进行交流的能力。

  2、正确评价学生的数学基础知识和基本技能

  关注学生在本章(节)及今后学习中,让学生集中学习算法的初步知识,主要包括算法的基本结构、基本语句、基本思想等。算法思想将贯穿高中数学课程的相关部分,在其他相关部分还将进一步学习算法

高中数学教学设计5

  提出问题:

  新课程认为知识不是单方面通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(教师指导和同学的帮助)协作,主动建构而获得的。它强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。通过多年教学实践和对新课程的认识,我认为若遵循这个原则进行数学课堂教学,学生的学习将是一种高效的活动。

  教材中的地位:

  本节内容是在指数范围扩充到实数的基础上引入指数函数的,而指数函数是高中研究的第一种具体函数。是在初中已经初步探讨了正比例函数,反比例函数,一次函数,二次函数的图像和性质的基础上,在进一步学习了函数的概念及有关性质的前提下,去研究学习的。重点是指数函数的图像及性质,难点在于弄清楚底数a对于函数变化的影响。这节课主要是学生利用描点法画出函数的图像,并描述出函数的图像特征,从而指出函数的性质。使学生从形到数的熟悉,体验研究函数的过程与思路,实现意识的深化。

  设计背景:

  在新教材的教学中,我慢慢体会到新教材渗透的、螺旋式上升的基本理念,知识点的形成过程经历从具体的实例引入,形成概念,再次运用于实际问题或具体数学问题的过程,它的应用性,实用性更明显的体现出来。学数学重在培养学生的思维品质,经过多年的数学学习,学生还是害怕学数学,尤其高中的数学,它对于学生来说显得很抽象。所以如果再让让学生感到数学离我们的生活太远,那么将很难激发他们的学习爱好。所以在教学中我尽力抓住知识的本质,以实际问题引入新知识。另外,就本章来说,指数函数是学习函数概念及基本性质之后研究的第一个重要的函数,让学生学会研究一个新的具体函数的方法比学会本身的知识更重要。在这个过程中,所有的知识都是生疏的,在大脑中没有形成基本的框架结构,需要老师的引导,使他们逐渐建立。数学中任何知识的形成都体现出它的思想与方法,因而授课中注重让学生领悟其中的思想,运用其中的方法去学习新的知识,是非常重要的。

  教学目标:

  一、知识:

  理解指数函数的定义,能初步把握指数函数的图像,性质及其简单应用。

  二、过程与方法:

  由实例引入指数函数的概念,利用描点作图的方法做出指数函数的图像,(有条件的话借助计算机演示验证指数函数图像)由图像研究指数函数的性质。利用性质解决实际问题。

  三、能力:

  1.通过指数函数的图像和性质的研究,培养学生观察,分析和归纳的能力,进一步体会数形结合的思想方法。

  2.通过对指数函数的研究,使学生能把握函数研究的基本方法。

  教学过程:

  由实际问题引入:

  问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,?1个这样的细胞分裂x次后,得到的细胞的个数y与x之间的关系是什么?

  分裂次数与细胞个数

  1,2;2,2×2=22;3,2×2×2=23;????;x,2×2×……×2=2x

  归纳:y=2x

  问题2:某种放射性物质不断变化为其它物质,每经过1年剩留的这种物质是原来的84%,那么经过x年后剩留量y与x的关系是什么?

  经过1年,剩留量y=1×84%=;经过2年,剩留量y=×=?经过x年,剩留量y=

  寻找异同:

  你能从以上的两个例子中得到的关系式里找到什么异同点吗?

  共同点:变量x与y构成函数关系式,是指数的形式,自变量在指数位置,底数是常数;不同点:底数的取值不同。

  那么,今天我们来学习新的一个基本函数:指数函数

  得到指数函数的定义:定义:形如y=ax(a>0且a≠1)的函数叫做指数函数。

  在以前我们学过的函数中,一次函数用形如y=kx+b(k≠0)的形式表示,反比例函数用形如y=k/x(k≠0)表示,二次函数y=ax2+bx+c(a≠0)表示。对于其一

  般形式上的系数都有相应的限制。问:为什么指数函数对底数有这样的要求呢?若a=0,当x>0时,恒等于0,没有研究价值;当x≤0时,无意义。

  若a

  若a=1,则=1,是一个常量,也没有研究的必要。

  所以有规定且a>0且a≠1。

  由定义,我们可以对指数函数有一初步熟悉。

  进一步理解函数的定义:

  指数函数的定义域:在我们学过的指数运算中,指数可以是有理数,当指数是无理数时,也是一个确定的实数,对于无理数,学过的有理指数幂的性质和运算法则都适用,所以指数函数的定义域为R。

  研究函数的途径:由函数的图像的性质,从形与数两方面研究。

  学习函数的一个很重要的目标就是应用,那么首先要对函数作一研究,研究函数的图像及性质,然后利用其图像性质去解决数学问题和实际问题。根据以往的经验,你会从那几个角度考虑?(图像的分布范围,图像的变化趋势)图像的分布情况与函数的'定义域,值域有关,函数的变化趋势体现函数的单调性。引导学生从定义域,值域,单调性,奇偶性,与坐标轴的交点情况着手开始。

  首先我们做出指数函数的图像,我们研究一般性的事物,常用的方法是:由特殊到一般。

  我们以具体函数入手,让学生以小组形式取不同底数的指数函数画它们的图像,将学生画的函数图像展示,(画函数的图像的步骤是:列表,描点,连线。)。最后,老师在黑板(电脑)上演示列表,描点,连线的过程,并且,画出取不同的值时,函数的图像。

  要求学生描述出指数函数图像的特征,并试着描述出性质。

  数学发展的历史表明,每一个重要的数学概念的形成和发展,其中都有丰富的经历,新课程较好的体现了这点。对新课程背景下的学生而言,数学的知识应该是一个数学化的过程,即通过对常识材料进行细致的观察、思考,借助于分析、比较、综合、抽象、概括等思维活动,对常识材料进行去粗取精、去伪存真的精加工。该案例正是从数学研究和数学实验的过程中进行设计。虽然学生的思维不一定真实的重演了人类对数学知识探索的全过程,但确确实实通过实验、观察、比较、分析、归纳、抽象、概括等思维活动,在探索中将数学数学化,从而才使学生对数学学习产生了乐趣,对数学的研究方法有了一定的了解。

  虽然学生要学的数学是历史上前人已建构好了的,但对他们而言,仍是全新的、未知的,需要用他们自己的学习活动来再现类似的过程。该案例正是从创设问题情景作为教学设计的重要的内容之一。教师应该把教学设计成学生动手操作、观察猜想、揭示规律等一系列过程,侧重于学生的探索、分析与思考,侧重于过程的探究及在此过程中所形成的一般数学能力。

  教师的地位应由主导者转变为引导者,使教学活动真正成为学生的活动。在教学过程中,把学习的主动权交给学生,在时间和空间上保证学生在教师的指导下,学生能自己独立自主的探究学习。使教学活动始终处于学生的“最近发展区”,使每一个学生通过自己的努力,在自己原有的基础上都有所获,都有提高。总之,通过案例研究,不断研究新教材、新理念,不断调整教学策略优化课堂教学,培养学生探究学习与创新学习能力将是我们在数学教学中要继续探究的课题。

高中数学教学设计6

  一、教学内容分析

  圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象,恰当地利用定义解题,许多时候能以简驭繁。因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

  二、学生学习情况分析

  我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

  三、设计思想

  由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情。在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率。

  四、教学目标

  1、深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

  2、通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

  3、借助多媒体辅助教学,激发学习数学的兴趣。

  五、教学重点与难点:

  教学重点

  1、对圆锥曲线定义的理解

  2、利用圆锥曲线的定义求“最值”

  3、“定义法”求轨迹方程

  教学难点:

  巧用圆锥曲线定义解题

  六、教学过程设计

  【设计思路】

  (一)开门见山,提出问题

  一上课,我就直截了当地给出例题1:

  (1)已知A(-2,0),B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是()。

  (A)椭圆(B)双曲线(C)线段(D)不存在

  (2)已知动点M(x,y)满足(x1)2(y2)2|3x4y|,则点M的轨迹是()。

  (A)椭圆(B)双曲线(C)抛物线(D)两条相交直线

  【设计意图】

  定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。

  为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。

  【学情预设】

  估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折——如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)25

  这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|5入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。

  在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是,实轴长为,焦距为。以深化对概念的理解。

  (二)理解定义、解决问题

  例2:

  (1)已知动圆A过定圆B:x2y26x70的圆心,且与定圆C:xy6x910相内切,求△ABC面积的最大值。

  (2)在(1)的条件下,给定点P(-2,2),求|PA|

  【设计意图】

  运用圆锥曲线定义中的数量关系进行转化,使问题化归为几何中求最大(小)值的模式,是解析几何问题中的一种常见题型,也是学生们比较容易混淆的一类问题。例2的设置就是为了方便学生的辨析。

  【学情预设】

  根据以往的经验,多数学生看上去都能顺利解答本题,但真正能完整解答的可能并不多。事实上,解决本题的关键在于能准确写出点A的轨迹,有了练习题1的铺垫,这个问题对学生们来讲就显得颇为简单,因此面对例2(1),多数学生应该能准确给出解答,但是对于例2(2)这样相对比较陌生的`问题,学生就无从下手。我提醒学生把3/5和离心率联系起来,这样就容易和第二定义联系起来,从而找到解决本题的突破口。

  (三)自主探究、深化认识

  如果时间允许,练习题将为学生们提供一次数学猜想、试验的机会。

  练习:

  设点Q是圆C:(x1)2225|AB|的最小值。3y225上动点,点A(1,0)是圆内一点,AQ的垂直平分线与CQ交于点M,求点M的轨迹方程。

  引申:若将点A移到圆C外,点M的轨迹会是什么?

  【设计意图】练习题设置的目的是为学生课外自主探究学习提供平台,当然,如果课堂上时间允许的话,

  可借助“多媒体课件”,引导学生对自己的结论进行验证。

  【知识链接】

  (一)圆锥曲线的定义

  1、圆锥曲线的第一定义

  2、圆锥曲线的统一定义

  (二)圆锥曲线定义的应用举例

  1、双曲线1的两焦点为F1、F2,P为曲线上一点,若P到左焦点F1的距离为12,求P到右准线的距离。

  2、|PF1||PF2|2P为等轴双曲线x2y2a2上一点,F1、F2为两焦点,O为双曲线的中心,求的|PO|取值范围。

  3、在抛物线y22px上有一点A(4,m),A点到抛物线的焦点F的距离为5,求抛物线的方程和点A的坐标。

  4、例题:

  (1)已知点F是椭圆1的右焦点,M是这椭圆上的动点,A(2,2)是一个定点,求|MA|+|MF|的最小值。

  (2)已知A(,3)为一定点,F为双曲线1的右焦点,M在双曲线右支上移动,当|AM||MF|最小时,求M点的坐标。

  (3)已知点P(-2,3)及焦点为F的抛物线y,在抛物线上求一点M,使|PM|+|FM|最小。

  5、已知A(4,0),B(2,2)是椭圆1内的点,M是椭圆上的动点,求|MA|+|MB|的最小值与最大值。

  七、教学反思

  1、本课将借助于,将使全体学生参与活动成为可能,使原来令人难以理解的抽象的数学理论变得形象,生动且通俗易懂,同时,运用“多媒体课件”辅助教学,节省了板演的时间,从而给学生留出更多的时间自悟、自练、自查,充分发挥学生的主体作用,这充分显示出“多媒体课件”与探究合作式教学理念的有机结合的教学优势。

  2、利用两个例题及其引申,通过一题多变,层层深入的探索,以及对猜测结果的检测研究,培养学生思维能力,使学生从学会一个问题的求解到掌握一类问题的解决方法,循序渐进的让学生把握这类问题的解法;将学生容易混淆的两类求“最值问题”并为一道题,方便学生进行比较、分析。虽然从表面上看,我这一堂课的教学容量不大,但事实上,学生们的思维运动量并不会小。

  总之,如何更好地选择符合学生具体情况,满足教学目标的例题与练习、灵活把握课堂教学节奏仍是我今后工作中的一个重要研究课题,而要能真正进行素质教育,培养学生的创新意识,自己首先必须更新观念——在教学中适度使用多媒体技术,让学生有参与教学实践的机会,能够使学生在学习新知识的同时,激发起求知的欲望,在寻求解决问题的办法的过程中获得自信和成功的体验,于不知不觉中改善了他们的思维品质,提高了数学思维能力。

高中数学教学设计7

  一、目标确定:忌泛化,倡明确

  〔描述〕某教师将“探索三角形内角和等于多少度”片段教学目标拟定为:认知目标――引导学生经历探索和发现三角形内角和等于180°的过程;能力目标――发展动手操作、观察比较、抽象概括的能力和初步的空间想象力;情感目标――在实践活动中体验探索的乐趣,体验转化迁移的思想方法。该教师就上述片段教学目标的拟定背景作了阐述:“数学课程标准强调,数学教学要重视三维目标的统一,片段教学作为常态课堂教学的缩影,同样也要注意教学目标的多元化……”

  〔分析〕片段教学受特定教学内容、教学时间的制约,其目标应比课时目标更加精简、具体。然而上述片段教学目标看似全面,但指向不明。究其原因,是教师在常态教学中受“数学教学应倡导知识与技能、过程与方法、情感态度与价值观等三维目标统一”的禁锢,习惯教学目标面面俱到,导致教学目标形式化,缺乏可操作性、可检测性。事实上,教学目标是教学活动的指南,不必面面俱到。教学目标只有具体、鲜明、精练、可及,才能成为教学活动的引路标。就上述片段教学而言,针对特定的片段教学内容,可将教学目标拟定为:“通过测量、剪拼、折叠等方法,引导学生经历探索和发现三角形内角和等于180°的过程,培养学生的探究意识。”这样,教学目标变得简约、具体、明确,教学活动才具有方向性、针对性。

  二、内容选择:忌臃肿,倡精练

  〔描述〕某教师就上述片段教学设计了以下四个活动:1?郾让学生猜一猜三角形的内角和是多少度,引出课题。2?郾让学生画出几个三角形,量一量、算一算这些三角形的内角度数和,得出“大小、形状不同的三角形的内角和为180°”的猜想。3?郾让学生将三角形三个内角剪下来,拼成一个平角,得到三角形内角和是180°。4?郾让学生把同一个三角形的三个内角折叠在一起,组成一个平角,得到三角形的内角和是180°。受到片段教学时间15分钟的限制,教师“教色”匆匆,虽然教得飞快,但最终还是没有完成预设内容,使本片段教学因残缺而遗憾。

  〔分析〕该教师的片段教学之所以“上不完”,从表面上看,是时间太短,但其深层次的原因是,教师在常态教学中习惯了追求教学资源“多”、“全”、“新”,而不是追求资源内容精当和综合运用。数学教学讲究时效性,教学内容不在多,而在于精,尤其注重教学内容能否引发学生对数学本质的积极思考。上述教学,前两个活动可以整合,后两个活动有重复之嫌。据此,教师可对教学内容进行优化,使教学活动变得精练:1?郾组织学生通过测量、计算三角形的内角和引发猜想。2?郾启发学生不用量,自己探究用剪或折的方法验证猜想。这样精选教学内容,就能让学生的探究活动充分而深刻,让数学课堂更富有实效。

  三、教学调控:忌盲从,倡预设

  〔描述〕学生动手测量、计算三角形的内角和,答案各不相同:有的说179°,有的说180°,还有的说181°……大家争相辩解,相持不下。教师见状,忙加引导:“认为内角和是179°的同学是怎样量的?”教师让测量结果不是180°的学生一一上台在实物投影仪上展示测量过程,再由其他学生评价、纠正。结果在测量计算这一环节花了近10分钟,而动手拼角、折角等活动只能蜻蜓点水,匆匆而过。教学活动“头重脚轻”,重心失衡。

  〔分析〕三角形的内角和为180°这一结论并非完全靠测量、计算得出,因为受测量工具、测量方法的制约,学生动手测量不一定能得到一个精确的结果,只要获得一定的体验、知道三个内角之和接近或等于180°就行了。从这个意义上说,教师盲目随着学生的思路对三角形内角和的“近似值”进行细致测量计算是没有意义的。上述片段教学中教师被学生的思路引着走,折射出教师没有对教材进行深入研究,对学生学习活动中可能出现的动态生成缺少精心预设。数学教学要重视课堂现场生成,更要强调课前精心预设,从教学目标达成的高度对课堂生成信息提出取或舍的对策;既要尊重学生解决问题的思路,给他们个性化的思考提供空间,也要正确引导他们将精力和思维集中在学习的核心处、知识的本质处。当学生测量、计算出三角形内角和大约为180°后,教师不必纠缠于此,而应通过“刚才大家通过测量、计算,猜测出三角形的内角和在180°左右,到底是多少呢?接下来我们动手验证”的过渡语,引导学生转入剪、拼、折等验证环节,直指教学目标,确保教学任务的完成。

  四、方法选择:忌花哨,倡实在

  〔描述〕在让学生动手折、剪、拼角的活动中,教师是这样组织的:同桌两人一组,每组发一张三角形纸片,同桌合作,将三角形的三个角组合在一起,看看它们的内角和是多少度。学生合作的效果并不尽如人意:有的组一人做,一人看;有的同桌两人重复操作,浪费时间;还有的.为谁先谁后操作而争论不休……课后,教师在反思中提到,这里之所以要设计同桌两人共同操作的活动,意在体现新课改倡导的合作学习方式。

  〔分析〕把一个三角形的三个角先剪下来,再拼在一起,对四年级的学生而言,没有多大难度;将一个三角形的三个角折在一起,变成一个平角,仅凭同桌两人合作则很难完成,需要教师点拨。可见,这里的合作探究没有多少合作的必要。教师为了体现合作学习,组织同桌学生合作操作纸片,是追求时髦、故弄花哨的表面形式,简单地把动手操作、合作学习、探究学习当成“新课堂”的展现点,而没有从学生“学”的角度对各种学法的实效进行评估,更没有选择有针对性的学习活动形式。因此,教师要从提高实效出发,对各种学习方法进行比较,并作出选择。如,通过剪、拼活动,验证三角形的内角和这一操作活动,可让学生独立完成,获取丰富而深刻的数学体验;通过折角验证内角和的活动,可由教师演示,学生观察、描述操作过程,并分析结果。这样的课堂教学尽管没了花哨的形式,却因能让学生积极参与而更富有实效。

高中数学教学设计8

  我先来介绍一下参加我们这次讲座的几位嘉宾,我身边这位是苏州五中的罗强校长,这边这位是苏州中学的刘华老师,那边那位是大家熟悉的首都师范大学数学系博士生导师王尚志教授。欢迎大家来到我们研讨的现场!

  老师们都知道,素质教育要落实在课堂上,课堂是我们实行数学新课程的主战场,做好教学设计是我们整个高中数学新课程推进的一个关键点。那么,怎样才能做好数学的教学设计呢?我们问过一些老师,大家感觉有些疑惑,比如说有的老师们认为:教学设计是不是就是备备课,写好一个教案、做一个课件,是不是这样?我们想听听来自江苏的老师怎么看这个问题?

  罗强:我来谈谈自己对教学设计理论的学习和实践过程中的一些体会。以前我们在教学实践中往往把教学设计变成一种简单的教案设计,但实际上这只是一种经验型的教学设计,没有上升为科学型的教学设计。其实,国际上对教学设计的研究已经进行多年,提出了许多思想、理论、案例,教学设计已经成为一个独立的研究领域。

  教学设计理论的发展基本上经历了两个阶段:第一个阶段是突出以“教的传递策略”为中心来进行教学设计的传统教学设计理论,它更接近工程学,遵循设计的规则和程序,强调目标递进和按部就班的系统操作过程,其特点是注重目标细化,注重分层要求,注重教学内容各要素的协调。就好像我们要造一幢房子,先要把这幢房子的图纸设计出来,然后再设计一个施工的蓝图,教学就是按照这样的设计来进行实施的一个过程。

  第二个阶段是突出以“学的组织方式”为中心来进行教学设计的现代教学设计理论,它的基础是信息加工理论与建构主义的学习理论,现代教学设计理论强调依据学习任务类型(如认知、情感与心理动作等)来选择教学策略,强调以问题为中心,营造一个能激活学生原有知识经验,有利于新知识建构的学习环境。其特点是问题与环境,强调创设情境,提出问题,营造问题解决的环境,突出学生的自主学习和自主探究。

  按照新的教学设计的理论,我们应该以学为中心来进行教学设计,简单的说就是——为学习而设计教学!打个比喻,就是说我们教师好比是导游,带着学生去一个新的景点旅游,那么在这个过程中间,教学设计就是设计这么一个导游图,让学生在参观各个景点的过程中,经历学习这些知识的一种过程。

  按照为学习而设计教学的理念,我觉得在教学设计时要考虑三条线索,这样实际上也就构成了教学设计的一种三维结构。第一条线索就是一种数学知识线索。因为教师进行的是学科教学;第二个线索是学生的认知线索。因为学习的主体是学生;第三个线索就是教师的教学组织线索,因为教学过程是通过教师的组织来实现的。比如第一条线索——数学知识,我觉得数学知识实际有三个形态:一是自然形态,它既存在于客观世界中间,实际上也存在于学生的头脑中间;二是学术形态,它是作为数学学科的一种知识体系而存在。那么,我们的教学就是要在数学的自然形态和学术形态的中间架一座桥梁,这座桥梁就是数学的教育形态。因此,我觉得教学设计的本质就是设计好数学的教育形态,教学设计的过程实际上就是构建数学教育形态的一个过程。

  通过对教学设计理论的学习,并在实践中反思和总结,我的体会很深。有一位美国学者兰达曾经说过:教学设计是使天才能够做到的事一般人也能去做。我想对教学设计理论的学习是一个大家都要努力的目标。

  张思明:刚才罗强老师从理论上分析了什么是教学设计?教学设计应该关注哪些问题?下面我们请刘华老师帮我们分析一下:在你们实验区和老师接触的实践中,你感觉到老师们在教学设计中存在着哪些主要问题?

  刘华:我想解剖一个由职初教师,就是刚刚工作的青年教师所提供的一个教学案例。

  我先简单介绍一下他的教学设计。这是高一函数单调性的一节起始课,在教学设计中,这个职初教师首先明确了这节课的三维目标,然后他提出了两个生活中的情境,一个情境是生活中的气温图;第二个情境是股票的价格走势图,然后引入新课。接着把函数单调性的概念介绍给学生,紧接着进入了例题讲解阶段,最后是有两个思考题。

  我觉得这个教学设计大致存在这样四点比较普遍的问题:

  第一个问题就是这位教师在确定课程目标的时候,比较机械地套用了新课程的理念,按照“知识技能,方法与过程,情感、态度、价值观”这样的三维目标来叙述他的本节课目标。在这些目标中,知识与技能的目标还是比较实在的,但“过程与方法”的目标以及“情感、态度、价值观”的目标就比较空洞,流于形式。其实,这位老师对教学目标并没有做深入的分析,这样的教学目标只是一个标签而已,这是第一个问题。

  第二个问题是问题情境的设计。好的情境应当是兼顾生活化与数学化,股票的价格走势图这个情境离学生的生活太远,其中还包含了许多股票方面的.专门知识,对函数单调性这个数学概念的反映也不够准确,作为本课的情境,不太恰当。

  第三个问题就是在情境到数学概念的产生过程中,应当让学生充分体验或参与数学化的探索过程,从而建构起函数单调性这一概念。我们看到在这位教师的设计当中,他忽略了学生活动,尤其是学生思维活动这样一个环节,而是直接把概念抛给了学生。我们认为学生在数学学习中,“过程”相对来说比仅仅接受概念这个“结果”更为重要。

  最后一个问题就是我们发现有很多老师认为数学教学设计主要就是习题的设计,这位教师本节课的例题、习题量非常多,而且对这些习题的要求他存在着一步到位的倾向,尤其是他最后抛出来的含字母的函数单调性的探索这个问题,我们觉得在新授课当中这个习题的要求太高了。我觉得老师们在教学设计中主要存在这样几点问题。

  张思明:刘华老师谈了一个单调性的案例,对一个新教师的案例做了一个分析,分析出了我们老师在教学设计中常常出现的一些问题。那么面对这样一些问题,我们应该怎么办?我们就以这个案例为出发点,请罗强老师对函数单调性这个课题做了一个分析和再创造的工作,在这个工作中我们可以看到如何通过教师自己的再学习、再认识,设计出一个更好、更适用于学生的教学设计。我们来看一下罗强老师的说课录像。

  罗强老师的说课:各位老师大家好,我向大家汇报一下我对函数单调性的教学设计。

  首先谈一下我对教学设计的认识。我觉得教学设计的根本目的是创设一个有效的教学系统,这样的教学系统不是随意出现的而是教师精心创设的,没有有效的教学设计就不可能保证教学的效果和质量。教学设计最根本的着力点是“为学习设计教学”,而不是“为教学设计学习”。

  教学设计的首要任务就是明确教学目标,实际上教学目标是教学设计的灵魂和统帅,将指引后续教学设计的方向,决定后续教学设计的具体工作。在制定教学目标的时候,我觉得要把握以下几点:

  第一,把握教学要求,不求一步到位。函数单调性是高中阶段刻划函数变化的一个最基本的性质。在高中数学课程中,对于函数单调性的研究分成两个阶段:第一个阶段是用运算的性质研究单调性,知道它的变化趋势;第二阶段用导数的性质研究单调性,知道它的变化快慢。那么高一我们是处在第一个阶段。第二,明确知识目标,落实隐性目标。知识目标往往就是教学的显性目标,确定知识目标的关键在于分清主次轻重,把握好教学要求。根据课程标准的要求,本节课的知识目标定位在以下三个方面:一是理解函数单调性的概念;二是掌握判断函数单调性的方法;三是会用定义证明一些简单函数在某个区间上的单调性。另外这节课的隐性目标我觉得也很重要,因为函数单调性的定义是对函数图象特征的一种数学描述,它经历了由图象直观特征到自然语言描述再到数学符号的描述的进化过程,反映了数学的理性思维和理性精神。对高一学生来讲它是一个很有价值的数学教育载体和契机。因此这节课的隐性目标应该包括让学生体验数学知识的发生发展过程,学会数学概念符号化的建构过程。根据刚才的分析,我把教学流程分成了三个阶段:第一个阶段是进行函数单调性概念的数学化过程;第二个阶段是从不同的角度帮助学生深入理解函数单调性的概念;第三个阶段是让学生学会判断,并用函数单调性的定义证明函数的单调性。

  第一阶段的教学流程分成三个教学环节。第一,问题情境;第二,温故知新;第三,建构概念。具体如下:

  先是创设问题情境。由老师和学生一起举出生活中描绘上升或者下降的变化规律的成语。老师可以启发一下,先说一个“蒸蒸日上”,然后和学生一起举出比如“每况愈下”,“波澜起伏”这样三种描绘不同变化的成语。然后请学生根据上述成语,给出一个函数,并在平面直角坐标系中绘制相应的函数图象。这样设计的意图是让学生结合生活体验用朴素的生活语言描绘变化规律,体会如何将文字语言转化为图形语言。

  接下来是温故知新。在刚才学生绘制出的三个函数图象的基础上,我请学生观察它们变化的趋势。在刚才学生绘制的三个函数图象的基础上,再请学生用初中的语言来叙述什么叫图象呈逐渐上升的趋势,也就是“函数值随着的增大而增大”。这样设计的意图是让学生对照绘制的函数图象,用自然语言描述函数的变化规律,重温初中函数单调性的描述定义。

  张思明:刚才我们看到了时骏老师的说课,下面我们来听一听嘉宾对这个说课的分析。

  罗强:我还是要强调教学设计一定要注意为学习而设计教学。还是拿我刚才的这个比喻,就是教师带学生去旅游。既然是带学生去旅游,首先就要考虑我要带学生到什么地方去?然后需要考虑我怎么才能够带学生到达这个地方?然后我要确定学生是不是真的到达了这个地方?还要注意的是,作为教学的一种延伸,我觉得还应该让学生有兴趣、有能力继续他自己的旅程。我觉得这是我们教学设计要做的主要工作。

  张思明:通过以上几个案例,我想老师们对于如何做教学设计有了一个初步的认识。怎样做好教学设计呢?我们也想听一听在教育指导部门的老师的一些想法,我们特别采访了江苏省教研室的董林伟主任,我们来听一听董主任关于教学设计的思考和认识。

  董主任:关于设计这两个词大家应该都非常的熟悉。当人们要从事一项有目的的活动的时候,事先都要有一些设想,要进行一些规划,要进行一些设计。作为我们教学工作者来说,在开始我们的教学活动之前,我们的老师都必须做一项非常重要的工作,那就是教学设计。今天我要谈的就是关于教学设计的话题。我想就三个方面来谈谈我的一些基本想法。第一,我想先谈谈什么叫教学设计?第二,谈谈我们在教学设计过程中应该来设计一些什么?第三,在设计的过程当中我们要注意哪几点?下面我想简要的把这三个方面跟大家做一个交流。

  一、关于什么叫教学设计?

  所谓的教学设计就是用系统的方法对各种课程资源进行有机的整合,对教学过程中相互联系的各个部分作出整体安排的一种构想。它是一种构想,是一种整体的安排,是我们教师为将来进行的教学勾画的一些图景,它反映了我们的教师对自己未来教学的一种认识和期望。如果通俗一点来说,那么所谓的教学设计可以这样来理解,就是:你要把学生带到哪里去?你怎样把学生带到那里去?你这样做能把学生带到那里去吗?

  二、在教学设计过程当中我们应该关注些什么,就是说设计一些什么?

  首先,我们必须明确我们的教学目标,教学目标是我们教学根本的指向与核心的任务,是教学设计的关键。教学的目标是教学中师生所预期达到的一种教学效果和标准,因此,明确教学目标就是要明确你要把学生带到哪里去。在确定教学目标的时候,我们要关注以下的几点:第一,整体性。就是要注意这部分内容在整个高中阶段数学教学中的联系,以达到教学的一种连贯性,要正确处理好我们的近期的目标跟远期目标的相互关系。第二,在我们明确目标的时候,要关注它的全面性。新课程对数学教学的目标提出了新的一种要求,三维目标在关注知识结果的同时,更注重对过程目标的关注和对学习者——学生的关注,更关注学生获取数学知识的过程以及在学习中的经历、感受和体验。因此,教师在设计数学教学目标时,应特别注意关注新课程所提出的过程性目标。第三,我们要关注目标的现实性。确定教学目标时,应当注意它与所授课任务的实质性联系,以避免目标空洞、无法落实。我们在设计教学目标时,常见的一种状况是目标过分的大,过分的空洞,那么在落实过程中,就难以达到预设的目标。其次,我们在教学设计中要非常关注学生,要了解学生。我想,以下几个方面,至少老师在教学设计过程中应该心中有数。

  第一,在数学方面学生以前做过什么?他在数学活动或者是在数学实验方面,曾经做过什么?这里我们实际上要关注的是学生的活动经验。

  第二,不同的学生在思维方式上会有什么不同。实际上就是要在教学中关注我所授课的学生的特点,关注我班学生的构成,班级当中不同群体的学生在思维方面有些什么样的不同。

  第三,要初步确定课堂的组织形式,就是说我这一堂课是整个班级一起学习,还是将学生分成若干个组来活动,甚至于是一种个体性的活动,包括开展一些个体性的实验活动,包括自主学习的一种活动方式。组织形式上还要关注这堂课需要利用什么模型?是否需要做适当的课件?或者准备一些相关的硬件设施。这也是我们在确定课堂组织形式是所必须要关注的。

  第四,要勾勒教学的一种顺序。这个顺序当中主要包括这样几点:

  第一点,应当怎样提出主题,通俗一点讲就是问题情境的创设。关于问题情境的创设,我们在相关的专题中也都提到它的重要性和一些要求。我们在勾勒教学顺序的时候,首先要关注的是怎样提出主题,这个主题应该是跟学生接近的,又要能够引起他的兴趣,又要围绕着我们的教学主题的,而且能够使得学生迅速的进入学习活动中。

  第二点,就是要关注是否需要复习以前的相关知识。一堂课的教学它往往不是独立的,而是有前后联系的,因此需要考虑我在这堂课教学中是否需要复习相关的知识?

  第三点,当学生对材料产生争论的时候,你准备提出怎样的探索性问题。当我们提出问题以后学生可能会产生什么样的一种思考,可能会产生一种什么样的争论?我们要了解这些争论的思维的背景,需要进行正确的引导,那么你就必须要设计好一些问题串,来引导学生围绕主题展开探索。

  第四点,我们在设计教学程序的过程中要关注一下我们使用的材料,我们的课本提出了什么样的观点,使用什么样课外的材料来帮助我们的教学。

  第五点,要根据学生对主题的掌握程度,准备几个可以供选择的,课堂当中要自主完成的练习,或者是课后要完成家庭作业。这些是勾勒我们整个教学流程的一些关键程序。

  三、教学设计中我们应该注意的方面。

  教学设计永远只是教学过程的一种预期,实际的教学活动则永远是一个谜。我们老师都有经验,同样的一个课题,同一个老师的备课,他在不同班的授课过程中都会产生不同的教学流程、教学效果。因为我们所面对的学生是不同的,是在变化的,我们的教学生成是变化的,只有当这堂课教学完成了,我们才能知道这堂课最后的结果。所以前面的教学设计只是一种预期,我们的教学设计就是要关注这样的一种变化。

  因此,教学设计首先要注意它的整体性,就是说我们的教学设计不是一种片断,是一种整体的设计,它不是写在我们纸上的一种文本,而是我们教师对自己和学生所持的一种整体性的目标。其次,要注意它的可变性,没有一件事情是丝毫不差地按照计划进行的。学生的思维可能还停留在你认为根本不重要的问题上,他们还会以你几乎不能想象的方式来理解某些概念。当活动过程受到影响时,你必须放弃你原来的教学计划,运用你对学生已有的知识的了解和更宏观的数学教学目标,去指导你的教学行动,也就是说要产生一些生成的问题。第三,要注意它创造性。我们的教师很大程度上会依赖于教材或教学参考书,以确保他们的数学教学内容符合一个内部连贯的发展框架。这种依赖有一定的好处,它能够使得我们的教学设计能够围绕着我们课程的设计来进行,但是同时也存在一些问题,就是说毕竟教材是我们课程的一种呈现,跟教学的呈现还是有着本质差别的。我们的教学设计应该是一种流动的过程,应该适合我们的学生,就像设计师设计的服装要符合你所设计的群体的特点和要求,如果考虑到个体,就要符合他的气质,符合他的整体形象。我们的教学设计也是这样,我想每个人都应该有个人设计的一种思考和魅力。

  刚才谈到这几点仅供我们老师做一种参考。

  张思明:各位老师,我们这一讲把教学设计中存在的问题通过几个案例给大家做了一个初步的展示。我想教学设计中的问题是一个教学实践过程中产生的问题,我们每一个老师都有自己的设计理念,都有自己设计成功或者不如意甚至失败的地方。我们希望研讨是一个互动的过程,我们真诚的期待着老师们把您们在教学设计中遇到的问题和成功的经验寄给我们,我们一起来研讨。那么这一讲就到这里,谢谢老师们的参与!

高中数学教学设计9

  一、问题导入,引发探究

  师:我在旅游时买回来一种磁性蛇蛋玩具(如图),所谓生活处处皆学问嘛,我把它运动过程中的轴截面用图形计算器做出了以下有趣的现象:

  两个全等的椭圆形卵,相互依偎旋转(动画)。你能通过所学解析几何知识,构造出这种有趣的现象吗?

  二、实验探究,交流发现

  探究1:卵之由来——椭圆的形成

  (1)单个定椭圆的形成

  椭圆的定义:平面内到两定点、的距离之和等于常数(大于)的点的轨迹叫做椭圆。(即若平面内的动点到两定点、的距离之和等于常数(大于),则点的轨迹为以、为焦点的椭圆。)

  思考1:如何使为定值?

  (不妨将两条线段的长度和转化为一条线段,即在线段的延长线上取点,使得,此时,为定值则可转化为为定值。)

  思考2:若为定值,则点的轨迹是什么?定点与点轨迹的位置关系?

  (以定点为圆心,为半径的圆。由于>,则点在圆内。)

  思考3:如何确定点的位置,使得,且?

  (线段的中垂线与线段的交点为点。)

  揭示思路来源:(高中数学选修2—1P497)如图,圆的半径为定长,是圆内一个定点,是圆上任意一点,线段的垂直平分线l和半径相交于点,当点在圆上运动时,点的轨迹是什么?为什么?

  (设圆的半径为,由椭圆定义,(常数),且,所以当点在圆周上运动时,点的轨迹是以为焦点的椭圆。)

  图形计算器作图验证:以圆与定点所在直线为轴,中垂线为轴建立直角坐标系,设圆半径,,即圆,点,则点轨迹是以以为焦点的椭圆,椭圆方程为。

  (2)单个动椭圆的形成

  思考4:构造一种动椭圆的方式

  (由于椭圆形状不变,即离心率不变,而长轴长为定值,则也要为定值,因此可将圆内点取在圆的同心圆上,当点在圆上动时,即可得到动椭圆。)

  图形计算器作图验证:当圆内动点取在圆的同心圆上,运动点,即得到动椭圆。

  (3)两个椭圆的形成

  观察两个椭圆相互依偎旋转的几个画面,分析两椭圆的位置关系。判断两个椭圆关于对称轴对称,且直线过两椭圆公共点,所以直线为两椭圆的公切线。

  因而找到公切线,作椭圆关于切线的对称椭圆即可。

  探究2:卵之所依——切线的判断与证明

  线段的垂直平分线与椭圆的位置关系

  (1)利用图形计算器中的“图象分析”工具直观判断与椭圆的位置关系、设圆上动点,则线段的中垂线的方程为,将动点的横坐标保存为变量,纵坐标保存为变量,随着点的改变,在Graphs中画出相应的动直线、用图形计算器中的“图象分析”工具找出椭圆所在区域内的直线与椭圆的交点,拖动点,动态观测交点个数的变化,发现无论点在何处,动直线与椭圆只有一个交点,因此判断直线与椭圆相切,并可求出该切点的坐标、也可以将椭圆方程与直线方程联立,用“代数”工具中的solve()求出方程组的解,从而判断根的.情况、

  (2)证明椭圆与直线相切、

  不妨设直线:,其中,,与椭圆方程联立,得,因此

  ,

  将,,代入上式,用“代数”工具中的expand()化简式子,得,所以椭圆与直线相切,切点为、

  (3)证明由任意圆上的动点和圆内一点确定的椭圆与线段中垂线均相切(反证法)

  因为椭圆是点的轨迹,而点是直线与线段中垂线的交点,所以点既在椭圆上,也在直线上。因此,直线与椭圆至少有一个公共点,即直线与椭圆相切或相交。

  假设直线与椭圆相交,设另一个交点为(与不重合)、因为,所以;又因为,

  所以为定值,而,矛盾、因此直线与椭圆相切。

  探究3:两卵相依——对称旋转椭圆的形成与动画

  当圆内动点取在圆的同心圆上,作椭圆关于切线的对称椭圆,运动点,隐藏相关坐标系与辅助圆等图形,呈现两卵相互依偎旋转的有趣效果。

  改变一些问题条件,进行深入探究与发现。

  探究4:改变点位置,探究点轨迹

  (1)曲线判断:利用TI图形计算器作图分析,拖动点,当点在定圆内且不与圆心重合时,交点的轨迹是椭圆;当点在定圆外时,则,交点的轨迹是双曲线;当点与圆心重合时,点的轨迹是圆的同心圆;当点在圆周上时,点的轨迹是是一点(圆心)、

  (2)方程证明:圆,设点,可解得点的轨迹方程为

  当或时,点的轨迹为圆心;

  当且时,点的轨迹方程为

  当时,点的轨迹为圆:;

  当且时,点的轨迹为椭圆;

  当或时,点的轨迹为双曲线。

  探究5:改变切线位置,探究由切线得到的包络图形

  查阅有关参考书籍,了解圆锥曲线的包络线,并利用图形计算器作出椭圆、双曲线的包络图形,自主探究抛物线的包络线(将定圆改为定直线)。

  结论:所谓包络图,就是指有一条曲线按照一定运动规律运动,保留其所有瞬间位置的影像,会有一条曲线能够和该运动曲线所有位置相切,这条曲线就成为该运动曲线的包络线。

  探究6:拓展延伸:椭圆切线的几个性质及其应用

  性质1:是椭圆的两个焦点,若点是椭圆上异于长轴两端点的任一点,则点的切线平分的外角。

  性质1′:点处的法线(过点且垂直于切线)平分。(即为椭圆的光学性质:从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线交于椭圆的另一个焦点上。)

  课后探究:阅读数学选修2—1P75阅读与思考——圆锥曲线的光学性质及其应用,了解双曲线、抛物线的光学性质。

  练习1:已知为椭圆的左、右焦点,点为椭圆上任一点,过焦点向作垂线,垂足为,则点的轨迹是_____________,轨迹方程是_______________。

  解:(1)直观判断:作轨迹

  (2)严谨证明:圆的定义

  由此得到:

  性质2:是椭圆的两个焦点,是长轴的两个端点,过椭圆上异于的任一点的切线,过做切线的垂线,垂足分别为,则在以长轴为直径的圆上。

  练习2:已知为椭圆的左、右焦点,点为椭圆上任一点,直线与椭圆相切与点,且到的垂线长分别为,求证:为定值。

  解:

  (1)直观判断:作图

  (2)严谨证明:利用性质2及圆的相交弦性质,

  由此得到:

  性质3:已知椭圆为,则焦点到椭圆任一切线的垂线长乘积等于。

  课后探究2:已知为椭圆的左、右焦点,点为椭圆上任一点,直线过点,且到的垂线长分别为,则

  ①当时,直线与椭圆的位置关系;(相交)

  ②当时,直线与椭圆的位置关系。(相离)

  (类比直线与圆位置关系的几何法,此为直线与椭圆位置关系的几何法)

  课后探究:双曲线、抛物线的切线是否有类似性质?

高中数学教学设计10

  一、单元教学内容

  (1)算法的基本概念

  (2)算法的基本结构:顺序、条件、循环结构

  (3)算法的基本语句:输入、输出、赋值、条件、循环语句

  二、单元教学内容分析

  算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。在本模块中,学生将在中学教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力

  三、单元教学课时安排:

  1、算法的基本概念3课时

  2、程序框图与算法的基本结构5课时

  3、算法的基本语句2课时

  四、单元教学目标分析

  1、通过对解决具体问题过程与步骤的分析体会算法的思想,了解算法的含义

  2、通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的.解决过程中理解程序框图的三种基本逻辑结构:顺序、条件、循环结构。

  3、经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句:输入、输出、斌值、条件、循环语句,进一步体会算法的基本思想。

  4、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

  五、单元教学重点与难点分析

  1、重点

  (1)理解算法的含义

  (2)掌握算法的基本结构

  (3)会用算法语句解决简单的实际问题

  2、难点

  (1)程序框图

  (2)变量与赋值

  (3)循环结构

  (4)算法设计

  六、单元总体教学方法

  本章教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。采用这些方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。

  七、单元展开方式与特点

  1、展开方式

  自然语言→程序框图→算法语句

  2、特点

  (1)螺旋上升分层递进

  (2)整合渗透前呼后应

  (3)三线合一横向贯通

  (4)弹性处理多样选择

  八、单元教学过程分析

  1.算法基本概念教学过程分析

  对生活中的实际问题通过对解决具体问题过程与步骤的分析(喝茶,如二元一次方程组求解问题),体会算法的思想,了解算法的含义,能用自然语言描述算法。

  2.算法的流程图教学过程分析

  对生活中的实际问题通过模仿、操作、探索,经历通过设计流程图表达解决问题的过程,了解算法和程序语言的区别;在具体问题的解决过程中,理解流程图的三种基本逻辑结构:顺序、条件分支、循环,会用流程图表示算法。

  3.基本算法语句教学过程分析

  经历将具体生活中问题的流程图转化为程序语言的过程,理解表示的几种基本算法语句:赋值语句、输入语句、输出语句、条件语句、循环语句,进一步体会算法的基本思想。能用自然语言、流程图和基本算法语句表达算法,4.通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

  九、单元评价设想

  1、重视对学生数学学习过程的评价

  关注学生在数学语言的学习过程中,是否对用集合语言描述数学和现实生活中的问题充满兴趣;在学习过程中,能否体会集合语言准确、简洁的特征;是否能积极、主动地发展自己运用数学语言进行交流的能力。

  2、正确评价学生的数学基础知识和基本技能

  关注学生在本章(节)及今后学习中,让学生集中学习算法的初步知识,主要包括算法的基本结构、基本语句、基本思想等。算法思想将贯穿高中数学课程的相关部分,在其他相关部分还将进一步学习算法

高中数学教学设计11

  一、课程说明

  (一)教材分析:

  此次一对一家教所使用教材为北师大版高中数学必修5。辅导内容为第一章第二节等差数列。前一节的内容为数列,学生已初步了解到数列的概念,知道什么是首项,什么是通项等等。以及了解到什么是递增数列,什么是递减数列。通过第一节的学习的铺垫,可以让学生更自主的探究,学习等差数列。而我也是在这些基础上为她讲解第二节等差数列。

  (二) 学生分析:

  此次所带学生是一名高二的学生。聪明但是不踏实,做题浮躁。基础知识掌握不够牢靠,知识的运用能力较差,分析能力较弱,解题思路不清。每次她遇到会的题,就快快的草率做完,总会有因马虎而犯的错误。遇到稍不会的,总是很浮躁,不能冷静下来慢慢思考。就由略不会变成不会。但她也是个虚心听教的孩子,给她讲课,她也会很认真地听讲。

  (三) 教学目标:

  1、通过教与学的配合,让她能够懂得什么是等差数列,以及等差数列的通项公式。

  2、通过对公式的推导,让她加深对内容的理解,以及学会自己对公式的推导。并且能够灵活运用。

  3、在教学中让她通过对公式的推导来明白推理的艺术,并且培养她学习,做题条理清晰,思路缜密的好习惯。

  4、让她在学习,做题中一步步抽丝剥茧,寻找解决问题的方法,培养她敢于面对数学学习中的困难,并培养她对克服困难和运用知识。耐心地解决问题。

  5、让她在学习中发现数学的独特的美,能够爱上数学这门课。并且认真对待,自主学习。

  (四)教学重点

  1让学生正确掌握等差数列及其通项公式,以及其性质。并能独立的推导。

  2、能够灵活运用公式并且能把相应公式与题相结合。

  (五) 教学难点:

  1、让学生掌握公式的推导及其意义。

  2如何把所学知识运用到相应的题中。

  二、课前准备

  (一) 教学器材

  对于一对一教教采用传统讲课。一张挂历。

  (二) 教学方法

  通过对生活中的有规律数据的观察来提出问题,让学生结合前一节所学,思考有什么规律。从生活中着手有利于激发学生的兴趣爱好,并能更积极地学习。让学生先独立的思考,不仅能让她对所学知识映像更为深刻,并且培养她的缜密思维。让她回答后,我再帮助她纠正,并且让她提出心中所虑。经过我给她讲完课后,让她回答自己先前的疑虑。并且让她自己总结,得出结论。最后让她勤加练习。以一种“提出问题—探究问题—学习知识—解答问题—得出结论—强加训练”的模式方法展开教学。

  (三) 课时安排

  课时大致分为五部分:

  1、联系实际提出相关问题,进行思考。

  2以我教她学的`模式讲授相关章节知识。

  3、让学生练习相关习题,从所学知识中找其相应解题方案。

  4学生对知识总结概括,我再对其进行补充说明。 5布置作业,让她课后多做练习。

  三、课程设计

  (一)提出问题

  【引入】

  根据我们的挂历上,一个月的日期数。通过观察每一行日期和每一列日期它们有什么规律?

  思考 1 2 3 13579......246810......66666......

  这些每一行有什么规律?

  (二) 分析问题并讲解

  1、通过观察每一个数与前一个数相差为同一个常数。再结合前一节所学数列的定义总结出“每一项与前一项的差为同一个常数,我们称这样的数列为等差数列。”并且得出“这个常数为等差数列的公差。”

  2、设首项为 a1 ,公差为d。由思考题 1 2 3可观察出什么?由学生通过她的发现来推导总结出

  ana1n1dnda1d

  3、通过分析通项公式的特点,做下题(学生自己分析,思考来做。) 例:已知在等差数列{an}中,a520a20xx,试求出数列的通项公式?

  通过学生做题再分析总结,用详细的语言讲解总结等差数列的性质

  4、由以上公式,性质,让学生总结。

讲解等差数列的定义。并且掌握数列的递增,递减与公差d的关系。

5总结,串讲当日所学

  给出题目:12349899100 让她求其和Sn,并思考如何快速计算?

  (三) 布置作业

  1、总结当日所学。 2做练习册上章节习题。

  3、根据当日所学以及课上所讲求 的思考题,找出快速运算方法,并引导预习等差数列前n项和。

  四、设计理念

  以一种最简便,易懂的方式让学生来学习,一切以让学生正确掌握知识,并能正确运用为理念。并能充分调动学生和家教老师的积极性为理念来设计。

  五、教学设计反思

  本节课教程内容较难,是下一节等差数列前n项和的铺垫。此节课学习通过联系实际,把数学融入到生活中,从生活中探究学习数学。并提出问题,分析问题。把主动权交给学生,由她先独立思考总结,再由我给她正确讲解总结,然后再让她做相应练习题,课后再认真总结。这样可以加强她学习的主动性,更有利于她对知识的消化,吸收。这种方法同时可以培养学生的思维能力,让她从自主学习中探索适合自己的学习方法,培养她独立思考的能力。让她更深刻的了解知识内涵,巩固所学。使她能灵活运用所学。

高中数学教学设计12

  函数的奇偶性

  函数的奇偶性是函数的重要性质,是对函数概念的深化.它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称.这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析.教材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义.然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例.最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的联系.这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性.

  教学目标:

  1.通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力.

  2.理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性.

  3.在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的任务分析

  这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数,(k≠0),二次函数y=ax,(a≠0),故可在此基础上,引入奇、偶函数的概念,以便于学生理解.在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔.对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的奇函数y=f(x),一定有f(0)=0;既是奇函数,又是偶函数的函数有f(x)=0,x∈R.在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数.关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果.

  一、问题情景

  1.观察如下两图,思考并讨论以下问题:

  (1)这两个函数图像有什么共同特征?

  (2)相应的两个函数值对应表是如何体现这些特征的?可以看到两个函数的图像都关于y轴对称.从函数值对应表可以看到,当自变量x取一对相反数时,相应的'两个函数值相同.

  对于函数f(x)=x,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事实上,对于R内任意的一个x,都有f(-x)=(-x)2=x2=f(x).此时,称函数y=x2为偶函数.

  2.观察函数f(x)=x和f(x)=的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征.

  22可以看到两个函数的图像都关于原点对称.函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值f(x)也是一对相反数,即对任一x∈R都有f(-x)=-f(x).此时,称函数y=f(x)为奇函数.

  二、建立模型

  由上面的分析讨论引导学生建立奇函数、偶函数的定义

  1.奇、偶函数的定义

  如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫作奇函数.如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫作偶函数.

  2.提出问题,组织学生讨论

  (1)如果定义在R上的函数f(x)满足f(-2)=f(2),那么f(x)是偶函数吗? (f(x)不一定是偶函数)

  (2)奇、偶函数的图像有什么特征?

  (奇、偶函数的图像分别关于原点、y轴对称) (3)奇、偶函数的定义域有什么特征? (奇、偶函数的定义域关于原点对称)

  三、解释应用[例题]

  1.判断下列函数的奇偶性.

  注:①规范解题格式;②对于(5)要注意定义域x∈(-1,1].

  2.已知:定义在R上的函数f(x)是奇函数,当x>0时,f(x)=x(1+x),求f(x)的表达式.

  解:(1)任取x<0,则-x>0,∴f(-x)=-x(1-x),

  而f(x)是奇函数,∴f(-x)=-f(x).∴f(x)=x(1-x).

  (2)当x=0时,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.

  3.已知:函数f(x)是偶函数,且在(-∞,0)上是减函数,判断f(x)在(0,+∞)上是增函数,还是减函数,并证明你的结论.

  解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x)在(0,+∞)上是增函数,证明如下:

  任取x1>x2>0,则-x1<-x2<0.

  ∵f(x)在(-∞,0)上是减函数,∴f(-x1)>f(-x2).又f(x)是偶函数,∴f(x1)>f(x2).

  ∴f(x)在(0,+∞)上是增函数.

  思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系?

  [练习]

  1.已知:函数f(x)是奇函数,在[a,b]上是增函数(b>a>0),问f(x)在[-b,-a]上的单调性如何.

  2. f(x)=-x3|x|的大致图像可能是()

  3.函数f(x)=ax2+bx+c,(a,b,c∈R),当a,b,c满足什么条件时,(1)函数f(x)是偶函数.(2)函数f(x)是奇函数. 4.设f(x),g(x)分别是R上的奇函数和偶函数,并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.

  四、拓展延伸

  1.有既是奇函数,又是偶函数的函数吗?若有,有多少个? 2.设f(x),g(x)分别是R上的奇函数,偶函数,试研究:(1)F(x)=f(x)·g(x)的奇偶性. (2)G(x)=|f(x)|+g(x)的奇偶性.

  3.已知a∈R,f(x)=a-,试确定a的值,使f(x)是奇函数.

  4.一个定义在R上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式?

高中数学教学设计13

  前言

  为了更好地贯彻落实和科课程标准有关要求,促进广大教师学习现代教学理论,进一步激发广大教师课堂教学的创新意识,切实转变教学观念,积极探索新课程理念下的教与学,有效解决教学实践中存在的问题,促进课堂教学质量的全面提高,在20xx年由福建省普通教育教学研究室组织,举办了一次教学设计大赛活动。这次活动数学学科高中组共收到有49篇教学设计文章。获奖文章推荐评审专家组本着公平、公正的原则,经过认真的评审,全部作品均评出了相应的奖项;专家组还为获得一、二等奖的作品撰写了点评。本稿收录的作品全部是参加此次福建省教学设计竞赛获奖作者的文章。按照征文的规则,我们对入选作品的格式作了一些修饰,并经过适当的整合,以飨读者。

  在此还需要说明的是,为了方便阅读,获奖文章的排序原则,并非按照获奖名次的前后顺序,而是按照高中数学新课程必修1—5的内容顺序,进行编排的。部分体现大纲教材内容的文章则排在后面。

  不管你获得的是哪个级别的奖项,你们都可以有成就感,因为那是你们用心、用汗浇灌出的果实,它记录了你们奉献于数学教育事业的心路历程.书中每一篇的教学设计都耐人寻味,都能带给我们许多遐想和启迪.你们是优秀的,在你们未来悠远的职业里程中,只要努力,将有更多的辉煌在等待着大家。谢谢你们!

  1、集合与函数概念实习作业

  一、教学内容分析

  《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。-----《实习作业》。本节课程体现数学文化的特色,学生通过了解函数的发展历史进一步感受数学的魅力。学生在自己动手收集、整理资料信息的过程中,对函数的`概念有更深刻的理解;感受新的学习方式带给他们的学习数学的乐趣。

  二、学生学习情况分析

  该内容在《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。学生第一次完成《实习作业》,积极性高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,做好准备工作,充分体现教师的“导演”角色。特别在分组时注意学生的合理搭配(成绩的好坏、家庭有无电脑、男女生比例、口头表达能力等),选题时,各组之间尽量不要重复,尽量多地选不同的题目,可以让所有的学生在学习共享的过程中受到更多的数学文化的熏陶。

  三、设计思想

  《标准》强调数学文化的重要作用,体现数学的文化的价值。数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值。让学生逐步了解数学的思想方法、理性精神,体会数学家的创新精神,以及数学文明的深刻内涵。

  四、教学目标

  1.了解函数概念的形成、发展的历史以及在这个过程中起重大作用的历史事件和人物;

  2.体验合作学习的方式,通过合作学习品尝分享获得知识的快乐;

  3.在合作形式的小组学习活动中培养学生的领导意识、社会实践技能和民主价值观。

  五、教学重点和难点

  重点:了解函数在数学中的核心地位,以及在生活里的广泛应用;

  难点:培养学生合作交流的能力以及收集和处理信息的能力。

  六、教学过程设计

  【课堂准备】

  1.分组:4~6人为一个实习小组,确定一人为组长。教师需要做好协调工作,确保每位学生都参加。

  2.选题:根据个人兴趣初步确定实习作业的题目。教师应该到各组中去了解选题情况,尽量多地选择不同的题目。

高中数学教学设计14

  片段一:

  师:“3×4”读作什么?生1:“3×4”读作“3乘4”。生2:“3×4”读作“3乘4”。全体学生:“3×4”读作“3乘4”。课堂巩固练习:“3x4读作――”,巡视发现学生写的答案是各种各样:有“三乘四”,“三×四”,“3×4”。等等。

  片段:

  师:“3×4”读作什么?生1:“3×4”读作“3乘4”。生2:“3×4”读作“3乘4”。

  师:立刻在“3×4”算式的旁边示范性板书:“读作:3乘4”。

  全体学生边看老师的板书边读:“3×4”读作“3乘4”。

  课堂巩固练习:“3×4读作――”,巡视发现学生的答案,几乎全是“3乘4”。

  这两组教学片段的教学设计几乎相同,两个班级学生的学习情况与教师教学水平也没有明显差异,主要差异只有一处――片段二中教师板书:“3×4”读作“3乘4”。并且片段二中教师适当地对学生回答问题的方式加以了引导:“那你们谁能用数学语言的方式把这道文字题用算式来体现呢?”并在学生表述时适当地配合了板书。由巩固练习可以看出。这两点差异产生的教学效果却大相径庭,两个片段的教学有效性为何相差如此之大?有必要对此进行检视与反思。

  下面试从课堂教学有效性的“三效”角度对两组教学片段进行比较分析,以探析提高数学课堂教学有效性的方法策略。

  一、片段二比片段一的教学效果大。教学有效果是指教学活动结果中与预期教学目标相一致的部分,它着重考察的.对象是学生,是对教学活动结果与预期教学目标吻合程度的评价。

  片段一中的知识目标是在理解“3×4”的意义下会读写“3×4”,在数学符号语言“3×4”与自然语言“3乘4”之间建立对应关系,属于陈述性知识的学习。在片段一中教师仅让学生口头说“‘3×4’读作‘3乘4’”并进行重复,由于语音“eheng”有多种表示形式,教师没有给学生明确示范用“3乘4”表示,学生根据语音,写出“三乘四”,“三×四”或“3×4”等是有其合理性的,这属于教学引起的合理性错误,在教学设计中教师要注意避免歧义的产生,避免由于教学设计的不当导致教学效果的缩减。片段=中教师通过板书给出清晰的表示形式,学生不会再出错,使教学的效果大大增加。

  二、片段二比片段一的教学效率高。教学效率是指单位教学投入所获得的教学产出。由于教学活动本身也可以看作是一种精神性的生产活动,可借用经济学的概念将教学效率表述为:教学效率=教学产出/教学投人。

  片段一仅仅是学生听、读,说。片段二在学生听、读、说的同时教师随即板书。因此,从以上两个教学片段本身分析可知。二者在教学投入上几乎没有什么差别,而从学生对知识掌握的情况来看,片段二的教学产出要比片段一的多。所以由公式:教学效率=教学产出/教学投入可知,片段二的教学效率比片段一的高。

  片段二中教师明确地在黑板上给出了板书示范,让学生在听的同时可以通过看板书来使获得的信息更加深刻。板书的示范增加了学生通过视觉获得信息的通道,而这一通道相对来说具有更高的效率。

  三、片段二比片段一的教学效益好。教学效益指的是教学活动的收益、教学活动价值的实现,具体而言是指教学目标与特定的社会和个人的教学需求是否吻合以及吻合程度的评价。

高中数学教学设计15

  一、教学目标

  1、在初中学过原命题、逆命题知识的基础上,初步理解四种命题。

  2、给一个比较简单的命题(原命题),可以写出它的逆命题、否命题和逆否命题

  3、通过对四种命题之间关系的学习,培养学生逻辑推理能力

  4、初步培养学生反证法的数学思维。

  二、教学分析

  重点:四种命题;难点:四种命题的关系

  1、本小节首先从初中数学的命题知识,给出四种命题的概念,接着,讲述四种命题的关系,最后,在初中的基础上,结合四种命题的知识,进一步讲解反证法。

  2、教学时,要注意控制教学要求。本小节的内容,只涉及比较简单的命题,不研究含有逻辑联结词“或”、“且”、“非”的命题的逆命题、否命题和逆否命题

  3、“若p则q”形式的命题,也是一种复合命题,并且,其中的p与q,可以是命题也可以是开语句,例如,命题“若,则x,y全为0”,其中的p与q,就是开语句。对学生,只要求能分清命题“若p则q”中的条件与结论就可以了,不必考虑p与q是命题,还是开语句。

  三、教学手段和方法(演示教学法和循序渐进导入法)

  1、以故事形式入题

  2、多媒体演示

  四、教学过程

  (一)引入:一个生活中有趣的与命题有关的笑话:某人要请甲乙丙丁吃饭,时间到了,只有甲乙丙三人按时赴约。丁却打电话说“有事不能参加”主人听了随口说了句“该来的没来”甲听了脸色一沉,一声不吭的走了,主人愣了一下又说了一句“哎,不该走的走了”乙听了大怒,拂袖即去。主人这时还没意识到又顺口说了一句:“俺说的又不是你”。这时丙怒火中烧不辞而别。四个客人没来的没来,来的又走了。主人请客不成还得罪了三家。大家肯定都觉得这个人不会说话,但是你想过这里面所蕴涵的数学思想吗?通过这节课的学习我们就能揭开它的庐山真面,学生的兴奋点被紧紧抓住,跃跃欲试!

  设计意图:创设情景,激发学生学习兴趣

  (二)复习提问:

  1.命题“同位角相等,两直线平行”的条件与结论各是什么?

  2.把“同位角相等,两直线平行”看作原命题,它的逆命题是什么?

  3.原命题真,逆命题一定真吗?

  “同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.

  学生活动:

  口答:

  (1)若同位角相等,则两直线平行;

  (2)若一个四边形是正方形,则它的四条边相等.

  设计意图:通过复习旧知识,打下学习否命题、逆否命题的基础.

  (三)新课讲解:

  1.命题“同位角相等,两直线平行”的条件是“同位角相等”,结论是“两直线平行”;如果把“同位角相等,两直线平行”看作原命题,它的逆命题就是“两直线平行,同位角相等”。也就是说,把原命题的结论作为条件,条件作为结论,得到的命题就叫做原命题的`逆命题。

  2.把命题“同位角相等,两直线平行”的条件与结论同时否定,就得到新命题“同位角不相等,两直线不平行”,这个新命题就叫做原命题的否命题。

  3.把命题“同位角相等,两直线平行”的条件与结论互相交换并同时否定,就得到新命题“两直线不平行,同位角不相等”,这个新命题就叫做原命题的逆否命题。

  (四)组织讨论:

  让学生归纳什么是否命题,什么是逆否命题。

  例1及例2

  (五)课堂探究:“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?

  学生活动:

  讨论后回答

  这两个逆否命题都真.

  原命题真,逆否命题也真

  引导学生讨论原命题的真假与其他三种命题的真

  假有什么关系?举例加以说明,同学们踊跃发言。

  (六)课堂小结:

  1、一般地,用p和q分别表示原命题的条件和结论,用¬p和¬q分别表示p和q否定时,四种命题的形式就是:

  原命题若p则q;

  逆命题若q则p;(交换原命题的条件和结论)

  否命题,若¬p则¬q;(同时否定原命题的条件和结论)

  逆否命题若¬q则¬p。(交换原命题的条件和结论,并且同时否定)

  2、四种命题的关系

  (1).原命题为真,它的逆命题不一定为真.

  (2).原命题为真,它的否命题不一定为真.

  (3).原命题为真,它的逆否命题一定为真

  (七)回扣引入

  分析引入中的笑话,先讨论,后总结:现在我们来分析一下主人说的四句话:

  第一句:“该来的没来”

  其逆否命题是“不该来的来了”,甲认为自己是不该来的,所以甲走了。

  第二句:“不该走的走了”,其逆否命题为“该走的没走”,乙认为自己该走,所以乙也走了。

  第三句:“俺说的不是你(指乙)”其值为真其非命题:“俺说的是你”为假,则说的是他(指丙)为真。所以,丙认为说的是自己,所以丙也走了。

  同学们,生活中处处是数学,期待我们善于发现的眼睛

  五、作业

  1.设原命题是“若

  断它们的真假.,则”,写出它的逆命题、否命题与逆否命题,并分别判

  2.设原命题是“当时,若,则”,写出它的逆命题、否定命与逆否命题,并分别判断它们的真假.

【高中数学教学设计】相关文章:

高中数学教学总结07-17

高中数学教学反思05-15

高中数学教学计划06-10

高中数学教学工作总结09-01

《冰花》教学设计06-09

《松鼠》教学设计06-09

拼音教学设计06-09

实用的教学设计06-10

《窗》教学设计06-18