- 相关推荐
圆柱的表面积优秀教学设计
作为一位无私奉献的人民教师,往往需要进行教学设计编写工作,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。怎样写教学设计才更能起到其作用呢?以下是小编为大家整理的圆柱的表面积优秀教学设计,欢迎大家分享。
圆柱的表面积优秀教学设计1
一、学习目标:
1、学习圆柱的侧面积和表面积的含义,并掌握圆柱侧面积和表面积的计算方法。
2、会正确计算圆柱的表面积和侧面积,能解决一些有关实际生活的问题。
二、学习重点:
掌握圆柱侧面积和表面积的计算方法。
三、学习难点:
运用所学的知识解决简单的实际问题。
四、学习过程:
(一)、旧知复习
1、圆柱有几个面?分别是x、x和x。
2、底面是x形,它的面积=x。
3、侧面是一个曲面,沿着它的高剪开,展开后得到一个x形。它的长等于圆柱的x,宽等于圆柱的x。
4、一个圆形水池,直径是5米,沿着水池走一圈是多少米?
(二)列式为
1、圆柱的侧面积
(1)圆柱的侧面积指的是什么?
(2)圆柱的侧面积的计算方法:
圆柱的侧面展开后是一个长方形,这个长方形的面积就等于圆柱的侧面积。因为长方形的面积=x,所以圆柱的侧面积=x。
(3)侧面积的练习
求下面各圆柱的侧面积。
①底面周长是1.6m,高0.7m。
②底面半径是3.2dm,高5dm。
小结:要计算圆柱的侧面积,必须知道圆柱的x和x这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。
2、圆柱的表面积
(1)圆柱的表面是由x和x组成。
(2)圆柱的表面积的计算方法:
圆柱的表面积=
(3)圆柱的表面积练习题
一顶圆柱形厨师帽,高28cm,帽顶直径是20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)
分析,理解题意:求需要用多少面料,就是求帽子的x。需要注意的.是厨师帽没有下底面,说明它只有x个底面。
列式计算:
①x帽子的侧面积=
②x帽顶的面积=
③x这顶帽子需要用面料=
小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟囱用铁皮只求一个侧面积;水桶用铁皮是侧面积+一个底面积;油桶用铁皮是侧面积+2个底面积。求用料多少,一般采用进一法取值,以保证原材料够用。
3、巩固练习
一个圆柱底面半径是2dm,高是4.5dm,求它的表面积。
4、总结:通过这节课的学习,你掌握了什么知识?
圆柱的侧面积
圆柱的表面积
五、教学结束:
布置学生课下复习本节课内容。
圆柱的表面积优秀教学设计2
教学内容:
北师大版六年级数学下册圆柱的表面积。
教学目的:
1、理解什么是圆柱的表面积,知道怎样计算圆柱的表面积。
2、能够利用学具动手操作、动脑思考推理圆柱的侧面积和表面积的计算公式。
3、能够运用所学知识解决实际问题,知道数学知识应用于生活实际时应结合具体情境。
4、培养动手操作、动脑思考的习惯和知识迁移的能力。教学重难点:圆柱侧面积计算公式的推理。
教学准备:
教师准备:长方体模型、多媒体课件。
学生准备:圆柱形纸盒、剪刀。
教学过程:
一、创设情境,导入新课。教师出示长方体模型。
提问:(1)长方体的表面积指什么?(六个面的面积之和)(2)如何计算长方体的表面积?(把六个面的面积加在一起)
多媒体出示:做一个圆柱形纸盒,至少需要用多大面积的纸板?(接口处不计,单位:厘米)
教师:至少需要用多大面积的纸板?也就是要计算什么?(圆柱的表面积)圆柱的表面积指什么?(三个面的面积之和)
如何计算圆柱的表面积?(把三个面的面积加在一起)
教师:圆柱的表面积就是它的三个面的面积之和,要计算圆柱的表面积只需
把三个面的面积加在一起,这节课我们就来研究圆柱的表面积。(板书课题:圆柱的表面积)
(由长方体的表面积导入圆柱的表面积,知识的迁移自然,学生容易理解圆柱的表面积)
二、自主探究,合作学习
教师:你能试着计算这个圆柱的表面积吗?(学生试算,教师巡视)
教师:我发现同学们都只计算了两个底面的面积,还有一个侧面的面积呢?(设置难题,激起学生的探究欲望)
教师:我们知道圆柱的侧面是一个曲面,能不能想办法把它转化成我们学过的图形呢?你猜想圆柱的侧面展开会是什么图形?(学生猜想:长方形、正方形、平行四边形······)
教师:你能想办法验证一下你的猜想吗?
(一)圆柱的侧面展开
1、学生利用课前准备的学具分组活动,教师巡视并参与学生活动。2、汇报质疑:学生到讲台上汇报展示圆柱的侧面展开图,教师多媒体演示。①圆柱的侧面展开后是长方形,我竖直把圆柱的侧面剪开得到一个长方形。
②圆柱的侧面展开后是平行四边形,我斜着把圆柱的侧面剪开得到一个平行四边形。
③圆柱的侧面展开后是长方形,因为我用一张长方形的.纸卷成了一个圆柱。
④圆柱的侧面展开后是长方形,因为我把圆柱滚动一周发现圆柱侧面走过的是一个长方形。
(动手操作,动脑思考,方法多样,为推理侧面积的计算公式打下基础。)(二)圆柱侧面展开图与圆柱的关系
1、教师:同学们做的真是太好了,那你发现圆柱侧面展开图与圆柱有什么关系呢?请同学们观察、讨论一下。(学生观察、讨论,教师巡视并参与讨论)
2、汇报质疑:学生到讲台上汇报展示,教师在黑板上画图演示。
①圆柱的底面周长
②圆柱的高
(三)圆柱的侧面积计算公式的推导
1、教师:你能根据长方形或平行四边形的面积计算方法得出圆柱的侧面积的计算方法吗?请同学们再观察、讨论。(学生观察、讨论,教师巡视并参与讨论)
2、汇报质疑:学生汇报展示,教师板书演示。
圆柱的底面周长
长方形的面积=长×宽
圆柱的侧面积=底面周长×高
平行四边形的面积=底×高
圆柱的底面周长
圆柱的侧面积=底面周长×高
教师:如果我们用S侧表示圆柱的侧面积,用C表示圆柱的底面周长,h表示圆柱的高,那么圆柱的侧面积计算公式应该是什么?(学生回答,教师板书)
S侧=Ch
汇报交流,质疑问难,计算表面积。
1、多媒体出示:做一个圆柱形纸盒,至少需要用多大面积的纸板?(接口处不计,单位:厘米)
30
教师:现在同学们能计算这个圆柱的侧面积了吗?(学生计算,教师巡视指导,请学生板演)
S侧=Ch=2×3、14×10×30=1884(平方厘米)
2、教师:那么现在你能计算这个圆柱的表面积吗?(学生计算,教师巡视)汇报交流,总结算法,并请学生板演。侧面积:2×3.14×10×30=1884(平方厘米)底面积:3.14×102=314(平方厘米)表面积:1884+314×2=2512(平方厘米)3、教师:你能总结圆柱的表面积计算方法吗?圆柱的表面积=侧面积+底面积×2巩固练习,应用新知。计算下列圆柱的表面积。
教师:你能运用学到的知识计算下列圆柱的表面积吗?下面三个圆柱有什么不同?
圆柱的表面积优秀教学设计3
教学目标:
圆柱表面积的,掌握圆柱表面积的计算方法,并能正确地计算圆柱的表面积。会解决简单的实际问题。
教学重点:
掌握表面积的计算方法
教学难点:
运用所学的知识解决简单的实际问题
教具准备:
圆柱的展开图
教学过程:
一、复习
1、指名学生说出圆柱的特征。
2、圆柱的侧面积=底面周长高
3、计算下面各圆柱的`侧面积。
(1)底面2.5周长米,高0.6米。
(2)底面直径4厘米,高10厘米。
(3)底面半径1.5分米,高8分米。
4、提问:圆柱的侧面积加两个底面的面积就圆柱的什么?(表面积)
二、教学表面积。
那么,圆柱的表面积是什么?明确:圆柱的表面.积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。
板书:圆柱的表面积=圆柱侧面积+两个底面的面积
1、教学例2。
出示例2的题目:一个圆柱的高是4.5分米,底面半径是2分米,它的表面积是多少?
(1)这道题已知什么?求什么?要求圆柱的表面积,应该先求什么?后求什么?
(2)我们可以根据已知条件画出这个圆柱。随后教师出示圆柱模型,将数据标在图上。现在我们把这个圆柱展开。出示展开图,如下:
2、小结:计算表面积时,一定要分步计算。先求什么,后求什么,再求什么。(提问)
3、出示试一试:要做一个没有盖的。圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)
(1)这道题已知什么?求什么?这个水桶是没有盖的,说明了什么?如果把做这个水桶的铁皮展开,会有哪几部分?
(2)要计算做这个水桶需要多少铁皮,应该分哪几步?
教师行间巡视,注意察看最后的得数是否计算正确。
(3)指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近似值的方法叫做进一法。
三、课堂小结。
在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积,水桶用铁皮是侧面积加上一个底面积,油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。
四、巩固练习。
练一练第1~4题。
圆柱的表面积优秀教学设计4
一、引入新课:
昨天我们认识了一个新的几何体朋友——圆柱,谁能向大家介绍一下你的这位新朋友?
生:圆柱是由平面和曲面围成的立体图形。
生:我还知道圆柱各部分的名称……
生:把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。
演示这一过程
师:你们对圆柱已经知道得这么多了,真了不起,还想对它作进一步的了解吗?(生:想)
师:你还想知道什么呢?
生:还想知道怎么求它的表面积......
师:今天我们就一起来研究怎样求圆柱的表面积。(板书:圆柱的表面积)
二、探究新知
师:过去我们学过正方体、长方体的表面积,出示一个长方体,谁来摸一摸这个长方体的表面积?
指名学生摸其表面积,并追问:怎样求它的表面积?
生:六个面的面积和就是它的表面积
师:怎样求圆柱的表面积呢?(学生分组讨论)
学生汇报:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。(教师板书)
1、圆柱的侧面积
师:两个底面是圆形的我们早就会求它的面积,而它的侧面是一个曲面,怎样计算它的侧面积呢?(请同学们讨论一下,我们看哪个小组最先找到突破口)
小组代表汇报:把圆柱的侧面沿着它的一条高展开得到一个长方形,长方形的面积等于长乘宽,而这个长方形的长正好等于圆柱的底面周长,宽等于圆柱的高,所以我们由此推出:圆柱的`侧面积就等于底面周长乘高。
师:大家同意他们的推理吗?(生:我们讨论的结果也跟他们一样)你们能够利用以前的经验,把它变成我们学过的图形来计算,太棒了。
展示其变化过程。
师生小结:(教师板书)侧面积=底面周长×高
呈现例一:一个圆柱,底面直径是0、4米,高是1、8米,求它的侧面积。
(1)学生独立解答
(2)指明学生解答,并让其讲清自己的解题思路。
师:通过刚才的解题思路说明要计算圆柱的侧面积需要抓出哪两个量?
生:底面周长和高
师:无论是直接告诉,还是间接告诉,只要能求出底面周长和高就可以求出其侧面积。
2、圆柱的表面积
师:求侧面积似乎难不住大家,现在再加一问,你们还能行吗?(教师在例一的后面加上求它的侧面积和表面积)
教师巡视,让一个学生板演,要求学生分步做,并标明每步求的是什么)
指名学生说解题思路,
师:这说明要计算圆柱的表面积需要抓出哪两个量?
生:底面积和侧面积
师生小结:圆柱的表面积=底面积×2﹢侧面积
3、反馈练习:(略)
师:想一想,应该先求什么?再求什么?请大家动手试一试。
4实践运用:师:在实际生活中计算某些圆柱的表面积时,要根据具体情况灵活运用公式,比如,求一个无盖的水桶的表面积,烟筒的表面积应该是怎样的呢?(生:略)
三、全课小结:这节课你有什么收获?
你有没有想提醒同学们注意的地方?
生:要注意单位,还要注意所要求得圆柱有几个底面……
四、自我评价
你认为自己这节课的表现如何?
圆柱的表面积优秀教学设计5
教学目标:
1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。
2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。
教学媒体:圆柱形物体、学具、多媒体课件
教学重点:圆柱侧面积的计算方法推导。
教学过程:
一、猜测面积大小,激发情趣导入
1、用你们手上的A4纸做一个尽量大的圆柱?(出现两种情况:一种是以长方形的长为底面周长的圆柱,另一种以长方形的宽为底面周长的圆柱。)
2、这两个圆柱谁的侧面积谁大?为什么?
3、复习:圆柱的侧面积=底面周长×高
刚才的环节中,用现成的练习纸,以动手操作的形式做一个圆柱体,充分调动了学生的学习兴趣;在“做、比、评”中唤起对圆柱侧面积知识的回忆。
二、组织动手实践,探究圆柱表面积
1、我们把做好的圆柱加上两个底面后,这时候圆柱的表面积由哪些部分组成呢?(侧面积和两个底面面积)
2、你们觉得这两个圆柱谁的表面积大?为什么?
生:因为两个圆柱的侧面积一样大,只要看他们的底面积谁大那么这个圆柱的表面积就大。
3、刚才我们是从直观的比较知道了谁的表面积大,如果要知道大多少,那怎么办呢?
生:计算的方法
师:怎么计算圆柱的表面积呢?
圆柱的表面积=侧面积+两个底面的面积(板书)
4、那现在你们就算算这两个圆柱的表面积是多少?
生:(不知所措)没有数字怎么算啊?
师:哦!那你们想知道哪些数字呢?知道了这些数字后你打算怎么计算?
生1:我想知道圆柱体的.底面半径和高。
生2:我想知道圆柱体的底面直径和高。
生3:我想知道圆柱体的底面周长和高。
………
师:老师现在告诉你的数字是这张纸的长是31.4厘米。宽是18.84厘米。那你们会算吗?怎样算,如果独立思考有困难的话可以小组讨论来共同完成。
5、汇报展示:
情况一:半径:31.4÷3.14÷2=5(cm)
底面积:3.14×5×5=78.5(平方厘米)
侧面积:31.4×18.84=591.576(平方厘米)
表面积:591.576+78.5×2=748.576(平方厘米)
情况二:半径:18.84÷3.14÷2=3(cm)
底面积:3.14×3×3=28.26(平方厘米)
侧面积:31.4×18.84=591.576(平方厘米)
表面积:591.576+28.26×2=648.096(平方厘米)
师:通过我们计算验证了我们刚才的判断是正确的。
接下来我们打开书翻到33页自学例2,从这个例题中你学到什么?
生:分三步来算,先算侧面积再算底面积然后把侧面积和两个底面积加起来。
生2:这样做挺麻烦的有没有更简单一点的方法呢?
6、好!我们一起来找一找有没有更简单的方法。(补充第二种方法)
教具的演示:把圆柱体的侧面展开得到一个长方形,然后把圆柱体的两个底面通过剪拼成一个近似的长方形。
问:这个近似的长方形的长和宽分别是圆柱体的哪一部分?(底面周长,也就是圆柱体的侧面展开得到的长方形的长。宽是圆柱体底面半径)
所以圆柱体表面积=长方形面积=底面周长×(高+半径)
用字母表示:S=C×(h+r)
我们用这个方法来验证一下我们的例2看是不是比原来简单?
汇报:大部分学生都认为比原来的方法简单。(说一说认为简单的原因)
【圆柱的表面积优秀教学设计】相关文章:
《圆柱的表面积》教学设计06-14
圆柱的表面积教学反思01-04
《圆柱的表面积》教学反思09-28
《圆柱的认识》教学反思03-08
《圆柱的体积》教学反思04-04
圆柱的认识教学反思10-17
《春》优秀教学设计02-18
《春》的优秀教学设计03-10
天窗优秀教学设计01-12